Author: Chris Albon
1
Ebook

Uczenie maszynowe w Pythonie. Receptury

Chris Albon

Uczenie maszynowe jest dziś wykorzystywane w różnych dziedzinach życia: w biznesie, w polityce, w organizacjach non profit i oczywiście w nauce. Samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania danych w wiedzę. Powstało sporo książek wyjaśniających sposób działania tych algorytmów i prezentujących nieraz spektakularne przykłady ich wykorzystania. Do dyspozycji pozostają też narzędzia przeznaczone do tego rodzaju zastosowań, takie jak biblioteki Pythona, w tym pandas i scikit-learn. Problemem pozostaje implementacja rozwiązań codziennych problemów związanych z uczeniem maszynowym. Z tej książki najwięcej skorzystają profesjonaliści, którzy znają podstawowe koncepcje związane z uczeniem maszynowym. Osoby te potraktują ją jako przewodnik ułatwiający rozwiązywanie konkretnych problemów napotykanych podczas codziennej pracy z uczeniem maszynowym. Dzięki zawartym tu recepturom takie zadania jak wczytywanie danych, obsługa danych tekstowych i liczbowych, wybór modelu czy redukcja wymiarowości staną się o wiele łatwiejsze do wykonania. Każda receptura zawiera kod, który można wstawić do swojego programu, połączyć lub zaadaptować według potrzeb. Przedstawiono także analizy wyjaśniające poszczególne rozwiązania i ich kontekst. Z tą książką płynnie przejdziesz od rozważań teoretycznych do opracowywania działających aplikacji i praktycznego korzystania z zalet uczenia maszynowego. Receptury w tej książce dotyczą: wektorów, macierzy i tablic obsługi danych liczbowych i tekstowych, obrazów, a także związanych z datą i godziną redukcji wymiarowości za pomocą wyodrębniania i wyboru cech oceny i wyboru modelu oraz regresji liniowej i logistycznej maszyn wektorów nośnych (SVM), naiwnej klasyfikacji bayesowskiej, klasteryzacji i sieci neuronowych zapisywania i wczytywania wytrenowanych modeli Uczenie maszynowe w Pythonie - użyj sprawdzonych receptur kodu!

2
Ebook

Uczenie maszynowe w Pythonie. Receptury. Od przygotowania danych do deep learningu. Wydanie II

Kyle Gallatin, Chris Albon

W ciągu ostatnich lat techniki uczenia maszynowego rozwijały się z niezwykłą dynamiką, rewolucjonizując pracę w różnych branżach. Obecnie do uczenia maszynowego najczęściej używa się Pythona i jego bibliotek. Znajomość najnowszych wydań tych narzędzi umożliwia efektywne tworzenie wyrafinowanych systemów uczących się. Oto zaktualizowane wydanie popularnego przewodnika, dzięki któremu skorzystasz z ponad dwustu sprawdzonych receptur bazujących na najnowszych wydaniach bibliotek Pythona. Wystarczy, że skopiujesz i dostosujesz kod do swoich potrzeb. Możesz też go uruchamiać i testować za pomocą przykładowego zbioru danych. W książce znajdziesz receptury przydatne do rozwiązywania szerokiego spektrum problemów, od przygotowania i wczytania danych aż po trenowanie modeli i korzystanie z sieci neuronowych. W ten sposób wyjdziesz poza rozważania teoretyczne czy też matematyczne koncepcje i zaczniesz tworzyć aplikacje korzystające z uczenia maszynowego. Poznaj receptury dotyczące: pracy z danymi w wielu formatach, z bazami i magazynami danych redukcji wymiarowości, jak również oceny i wyboru modelu regresji liniowej i logistycznej, drzew i lasów, a także k-najbliższych sąsiadów maszyn wektorów nośnych (SVM), naiwnej klasyfikacji bayesowskiej i klasteryzacji udostępniania wytrenowanych modeli za pomocą wielu frameworków Długo szukałam książki, która spójnie przedstawiałaby algorytm ANN, hiperpłaszczyzny i wybór cech za pomocą losowego lasu. I wtedy pojawiła się ta pozycja! Vicki Boykis, inżynier uczenia maszynowego w Duo