Autor: Stanisław Osowski
1
Ebook

Matematyczne modele uczenia maszynowego w językach MATLAB i PYTHON

Stanisław Osowski, Robert Szmurło

Prezentowane opracowanie dotyczy różnych modeli i metod stosowanych w uczeniu maszynowym. W szczególności, w poszczególnych rozdziałach przedstawione są takie zagadnienia, jak: regresja liniowa; klasyfikatory KNN; klasyfikatory Bayesa; modele matematyczne drzew decyzyjnych; sieci neuronowe MLP; sieci RBF; sieci SVM do klasyfikacji i regresji; sieci głębokie (CNN, autoenkoder, LSTM, transformer); zagadnienia zdolności generalizacyjnych modeli, w tym zespoły klasyfikatorów i systemów regresyjnych; transformacje i metody redukcji wymiaru danych wielowymiarowych; metody grupowania danych wielowymiarowych; wybrane metody generacji i selekcji cech diagnostycznych; metody oceny jakości rozwiązań; podstawowe rozwiązania adaptacyjnych systemów rozmytych. W przedstawieniu poszczególnych rozwiązań modelowych zaprezentowano zarówno strukturę pod-stawowych modeli, jak i algorytmy uczące dostosowane do konkretnego modelu. Ponieważ z punktu widzenia aktualnego stanu wiedzy do najważniejszych rozwiązań sztucznej inteligencji należą sztuczne sieci neuronowe. Tym zagadnieniom poświęcono najwięcej uwagi, wprowadzając różne rozwiązania sieciowe, w tym perceptron wielowarstwowy (MLP), sieć o radialnej funkcji bazowej (RBF), maszynę wektorów nośnych (SVM) czy różne rozwiązania głębokich sieci neuronowych wielowarstwowych, takich jak sieć konwolucyjna (CNN), autoenkoder (AE) czy sieć LSTM. Teoretyczne podstawy algorytmów uczących zostały zilustrowane przykładowymi programami implementującymi je przy użyciu oprogramowania Matlab i Python. Prezentowane w podręczniku skrypty z przykładami w Matlabie i Pythonie zostały udostępnione na platformie Github pod adresem: https://github.com/szmurlor/mmum. Podręcznik jest przeznaczony dla słuchaczy wyższych lat studiów, doktorantów i ludzi zainteresowanych metodami uczenia maszynowego, podstawowego narzędzia sztucznej inteligencji. Ze względu na interdyscyplinarny charakter tematyki może być wykorzystany zarówno w informatyce, inżynierii biomedycznej, jak i innych naukach technicznych. Wprowadzenie zarówno podstawowych jak i zaawansowanych pojęć uczenia maszynowego powoduje, że może być użyteczny dla osób początkujących i zaawansowanych w tej tematyce.

2
Ebook

Sieci neuronowe do przetwarzania informacji

Stanisław Osowski

Podręcznik „Sieci neuronowe do przetwarzania informacji” stanowi oryginalne ujęcie najnowszych osiągnięć w dziedzinie sztucznych sieci neuronowych oraz ich zastosowań. Jest rozszerzoną i znacznie zmodyfikowaną wersją wcześniejszego wydania podręcznika pod tym samym tytułem. W stosunku do poprzedniego wydania zawiera dodatkowo omówienie sieci typu Support Vector Machine (SVM), znacznie rozbudowaną część dotyczącą sieci rozmytych oraz przedstawienie wielu nowych zastosowań. W pracy przedstawiono najważniejsze rodzaje sieci neuronowych, kładąc nacisk na algorytmy uczące oraz ich praktyczne zastosowania w przetwarzaniu danych pomiarowych. Stanowi wyselekcjonowany przegląd i omówienie najważniejszych metod uczenia sieci o różnej strukturze, zilustrowany wynikami wielu eksperymentów numerycznych i poparty zastosowaniami praktycznymi.   Podręcznik jest przeznaczony dla słuchaczy wyższych lat studiów oraz doktorantów zainteresowanych tematyką sztucznej inteligencji. Ze względu na interdyscyplinarny charakter tematyki może być wykorzystany zarówno w naukach technicznych, informatyce, fizyce, jak i naukach biomedycznych. Wprowadzając zarówno podstawowe, jak i zaawansowane pojęcia sieci neuronowych książka może być użyteczna zarówno dla początkujących, jak i zaawansowanych w uprawianiu tej dyscypliny.

3
Ebook

Wybrane zagadnienia teorii obwodów

Stanisław Osowski

Podręcznik przeznaczony jest dla studentów pierwszego semestru drugiego stopnia studiów na kierunku Elektrotechnika. Omówiono w nim najważniejsze problemy związane z teorią i zastosowaniem grafów przepływowych, analizą i projektowaniem filtrów analogowych, syntezą obwodów pasywnych, wrażliwością obwodów i układów elektrycznych, obwodami i układami czasu dyskretnego, obwodami nieliniowymi w szerokim ujęciu (zarówno analizy, jak i syntezy) oraz linią długą. Są to zagadnienia nieporuszane na wykładach z teorii obwodów prowadzonych na pierwszym stopniu kształcenia, a przy tym znacznie rozszerzające wiedzę studenta w zakresie teorii obwodów i jej zastosowań.   Przekazując treści wykładu, autor starał się przedstawić je w formie jak najbardziej przystępnej, ukierunkowanej i aplikacyjnej. Podręcznik jest bogato ilustrowany przykładami obliczeniowymi ułatwiającymi przyswojenie sobie rozległej wiedzy z tej dziedziny.