Автор: Chris Fregly
1
Eлектронна книга

Generatywna sztuczna inteligencja na platformie AWS. Tworzenie multimodalnych aplikacji wnioskujących kontekstowo

Chris Fregly, Antje Barth, Shelbee Eigenbrode

Podczas projektowania aplikacji opartych na generatywnej AI trzeba dokonywać wielu wyborów decydujących o jakości danych dostarczanych przez aplikację, jej opłacalności, skalowalności i niezawodności. Decyzje te są tym trudniejsze, że świat generatywnej AI zmienia się niezwykle szybko, a mity i błędne przeświadczenia dotyczące tej technologii mają się świetnie. W tej niezwykle pragmatycznej książce, przeznaczonej dla dyrektorów technicznych, praktyków uczenia maszynowego, twórców aplikacji, analityków biznesowych, inżynierów i badaczy danych, znajdziesz skuteczne techniki używania sztucznej inteligencji. Zaznajomisz się z cyklem życia projektu opartego na generatywnej AI i jej zastosowaniami, a także metodami doboru i dostrajania modeli, generowania danych wspomaganego wyszukiwaniem, uczenia przez wzmacnianie na podstawie informacji zwrotnych od człowieka, kwantyzacji, optymalizacji i wdrażania modeli. Poznasz szczegóły różnych typów modeli, między innymi dużych językowych (LLM), multimodalnych generujących obrazy (Stable Diffusion) i odpowiadających na pytania wizualne (Flamingo/IDEFICS). Dowiedz się, jak: używać generatywnej AI w biznesie dobierać modele generatywnej AI stosować inżynierię monitu i uczenie kontekstowe dostrajać modele przy użyciu własnych zbiorów danych i techniki LoRA korzystać z agentów i akcji za pomocą bibliotek LangChain i ReAct tworzyć aplikacje na bazie usługi Amazon Bedrock To fascynująca książka, rewelacyjna kompozycja niezwykle ważnych informacji, a także szczegółowych, praktycznych kodów, skryptów i instrukcji! Jeff Barr, wiceprezes i główny popularyzator AWS

2
Eлектронна книга

Inżynieria danych na platformie AWS. Jak tworzyć kompletne potoki uczenia maszynowego

Chris Fregly, Antje Barth

Platforma Amazon Web Services jest uważana za największą i najbardziej dojrzałą chmurę obliczeniową. Zapewnia bogaty zestaw specjalistycznych narzędzi ułatwiających realizację projektów z zakresu inżynierii danych i uczenia maszynowego. W ten sposób inżynierowie danych, architekci i menedżerowie mogą szybko zacząć używać danych do podejmowania kluczowych decyzji biznesowych. Uzyskanie optymalnej efektywności pracy takich projektów wymaga jednak dobrego rozeznania w możliwościach poszczególnych narzędzi, usług i bibliotek. Dzięki temu praktycznemu przewodnikowi szybko nauczysz się tworzyć i uruchamiać procesy w chmurze, a następnie integrować wyniki z aplikacjami. Zapoznasz się ze scenariuszami stosowania technik sztucznej inteligencji: przetwarzania języka naturalnego, rozpoznawania obrazów, wykrywania oszustw, wyszukiwania kognitywnego czy wykrywania anomalii w czasie rzeczywistym. Ponadto dowiesz się, jak łączyć cykle rozwoju modeli z pobieraniem i analizą danych w powtarzalnych potokach MLOps. W książce znajdziesz też zbiór technik zabezpieczania projektów i procesów z obszaru inżynierii danych, takich jak stosowanie usługi IAM, uwierzytelnianie, autoryzacja, izolacja sieci, szyfrowanie danych w spoczynku czy postkwantowe szyfrowanie sieci dla danych w tranzycie. Najciekawsze zagadnienia: narzędzia AWS związane ze sztuczną inteligencją i z uczeniem maszynowym kompletny cykl rozwoju modelu przetwarzania języka naturalnego powtarzalne potoki MLOps uczenie maszynowe w czasie rzeczywistym wykrywanie anomalii i analiza strumieni danych zabezpieczanie projektów i procesów z obszaru inżynierii danych AWS i inżynieria danych: tak zwiększysz wydajność i obniżysz koszty! Implementowanie solidnego kompletnego procesu uczenia maszynowego to żmudne zadanie, dodatkowo komplikowane przez szeroki zakres dostępnych narzędzi i technologii. Autorzy wykonali świetną robotę, a jej efekty pomogą zarówno nowicjuszom, jak i doświadczonym praktykom realizować to zadanie z wykorzystaniem możliwości, jakie dają usługi AWS Brent Rabowsky, danolog w firmie Amazon Web Services