Programowanie

Nasza biblioteka online zawiera szereg publikacji, dzięki którym programowanie nie będzie mieć przed Tobą żadnych tajemnic. Zawarte tu książki przybliżą Ci takie języki jak HTML, JavaScript, Python czy CSS. Dowiesz się dzięki nim także tego, jak tworzyć efektywne algorytmy, projektować aplikacje mobilne, czy dbać o poprawną architekturę informacji w serwisach internetowych.

689
Ebook

Deep Learning By Example. A hands-on guide to implementing advanced machine learning algorithms and neural networks

Ahmed Menshawy

Deep learning is a popular subset of machine learning, and it allows you to build complex models that are faster and give more accurate predictions. This book is your companion to take your first steps into the world of deep learning, with hands-on examples to boost your understanding of the topic.This book starts with a quick overview of the essential concepts of data science and machine learning which are required to get started with deep learning. It introduces you to Tensorflow, the most widely used machine learning library for training deep learning models. You will then work on your first deep learning problem by training a deep feed-forward neural network for digit classification, and move on to tackle other real-world problems in computer vision, language processing, sentiment analysis, and more. Advanced deep learning models such as generative adversarial networks and their applications are also covered in this book.By the end of this book, you will have a solid understanding of all the essential concepts in deep learning. With the help of the examples and code provided in this book, you will be equipped to train your own deep learning models with more confidence.

690
Ebook

Deep Learning Essentials. Your hands-on guide to the fundamentals of deep learning and neural network modeling

Wei Di, Jianing Wei, Anurag Bhardwaj

Deep Learning a trending topic in the field of Artificial Intelligence today and can be considered to be an advanced form of machine learning. This book will help you take your first steps in training efficient deep learning models and applying them in various practical scenarios. You will model, train, and deploy different kinds of neural networks such as CNN, RNN, and will see some of their applications in real-world domains including computer vision, natural language processing, speech recognition, and so on. You will build practical projects such as chatbots, implement reinforcement learning to build smart games, and develop expert systems for image captioning and processing using Python library such as TensorFlow. This book also covers solutions for different problems you might come across while training models, such as noisy datasets, and small datasets.By the end of this book, you will have a firm understanding of the basics of deep learning and neural network modeling, along with their practical applications.

691
Ebook

Deep Learning for Beginners. A beginner's guide to getting up and running with deep learning from scratch using Python

Dr. Pablo Rivas, Laura Montoya

With information on the web exponentially increasing, it has become more difficult than ever to navigate through everything to find reliable content that will help you get started with deep learning. This book is designed to help you if you're a beginner looking to work on deep learning and build deep learning models from scratch, and you already have the basic mathematical and programming knowledge required to get started.The book begins with a basic overview of machine learning, guiding you through setting up popular Python frameworks. You will also understand how to prepare data by cleaning and preprocessing it for deep learning, and gradually go on to explore neural networks. A dedicated section will give you insights into the working of neural networks by helping you get hands-on with training single and multiple layers of neurons. Later, you will cover popular neural network architectures such as CNNs, RNNs, AEs, VAEs, and GANs with the help of simple examples, and learn how to build models from scratch. At the end of each chapter, you will find a question and answer section to help you test what you've learned through the course of the book.By the end of this book, you'll be well-versed with deep learning concepts and have the knowledge you need to use specific algorithms with various tools for different tasks.

692
Ebook

Deep Learning for Computer Vision. Expert techniques to train advanced neural networks using TensorFlow and Keras

Rajalingappaa Shanmugamani

Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation.

693
Ebook

Deep Learning for Natural Language Processing. Solve your natural language processing problems with smart deep neural networks

Karthiek Reddy Bokka, Shubhangi Hora, Tanuj Jain, Monicah Wambugu

Applying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts by highlighting the basic building blocks of the natural language processing domain.The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this, delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book, you’ll study convolutional, recurrent, and recursive neural networks, in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In later chapters, you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search.By the end of this book, you will not only have sound knowledge of natural language processing, but also be able to select the best text preprocessing and neural network models to solve a number of NLP issues.

694
Ebook

Deep learning i modelowanie generatywne. Jak nauczyć komputer malowania, pisania, komponowania i grania

David Foster

Techniki uczenia głębokiego rozwijają się w imponującym tempie, a sieci neuronowe znajdują zastosowanie w przeróżnych branżach. Coraz częściej komputer wykonuje zadania, które do niedawna były zarezerwowane dla człowieka. Dobrym przykładem jest tworzenie dzieł sztuki: ostatnie postępy w dziedzinie modelowania generatywnego sprawiają, że maszyny tworzą oryginalne obrazy w określonym stylu, piszą spójne akapity tekstu, komponują przyjemną w odbiorze muzykę i generują prawdopodobne scenariusze zdarzeń. Ta "generatywna rewolucja" już się zaczęła, a jej efekty przekraczają najśmielsze wyobrażenia. Ta książka jest praktycznym przewodnikiem przeznaczonym dla inżynierów uczenia maszynowego i analityków danych. W jasny i przystępny sposób omówiono w niej zasadnicze zagadnienia teorii modelowania generatywnego, a następnie zaprezentowano techniki stosowane do budowy modeli generatywnych, włącznie z ogólnym opisem uczenia głębokiego, wariacyjnych autoenkoderów i generatywnych sieci antagonistycznych (GAN). Na tej podstawie - z wykorzystaniem biblioteki Keras - pokazano wewnętrzne funkcjonowanie każdej z tych technik, łącznie z najbardziej nowatorskimi architekturami. Opisano krok po kroku sposoby rozwiązywania takich twórczych zadań jak malowanie, pisanie i komponowanie muzyki, a także zastosowania modelowania generatywnego do optymalizacji strategii grania w gry (modele World). W książce między innymi: działanie autoenkoderów wariacyjnych tworzenie sieci GAN, w tym CycleGAN i MuseGAN rekurencyjne modele generatywne do tworzenia tekstu oraz mechanizmy uwagi modele generatywne w środowiskach uczenia przez wzmacnianie architektura Transformer (BERT, GPT-2) oraz modele generowania obrazu Czy potrafisz stworzyć... twórcę?

695
Ebook

Deep Learning. Praca z językiem Python i biblioteką Keras

Francois Chollet

W skrócie uczenie maszynowe polega na wyodrębnianiu informacji z surowych danych i budowie modelu, który służy do przetwarzania kolejnych surowych danych. Technologia ta od kilku lat intensywnie się rozwija, a w miarę wzrostu jej możliwości rosną również zainteresowanie i oczekiwania architektów i użytkowników. Niektórzy widzą w głębokim uczeniu poważne zagrożenie, jednak obietnice, jakie daje ten rodzaj sztucznej inteligencji, są fascynujące. Narzędzia służące do programowania uczenia maszynowego, takie jak zaimplementowana w Pythonie biblioteka Keras, są dostępne dla każdego, kto chce wykorzystać tę technologię do własnych celów. Niniejsza książka jest praktycznym przewodnikiem po uczeniu głębokim. Znalazły się tu dokładne informacje o istocie uczenia głębokiego, o jego zastosowaniach i ograniczeniach. Wyjaśniono zasady rozwiązywania typowych problemów uczenia maszynowego. Pokazano, jak korzystać z pakietu Keras przy implementacji rozpoznawania obrazu, przetwarzania języka naturalnego, klasyfikacji obrazów, przewidywania danych szeregu czasowego, analizy sentymentu, generowania tekstu i obrazu. Nawet dość skomplikowane zagadnienia, włączając w to koncepcje i dobre praktyki, zostały wyjaśnione w sposób bardzo przystępny i zrozumiały, tak aby umożliwić samodzielne stosowanie technik uczenia głębokiego w kolejnych projektach. W tej książce między innymi: kontekst i ogólne koncepcje sztucznej inteligencji, uczenia maszynowego i uczenia głębokiego sieci neuronowe i pakiet Keras typowe sposoby pracy nad projektami uczenia głębokiego rozbudowane modele uczenia głębokiego oraz modele generatywne perspektywy i ograniczenia technologii Uczenie głębokie. Nikt nie zna granic tej technologii!

696
Ebook

Deep Learning. Praca z językiem R i biblioteką Keras

Francois Chollet, J. J. Allaire

W ostatnich latach byliśmy świadkami ogromnego postępu technik sztucznej inteligencji, uczenia maszynowego oraz uczenia głębokiego. Konsekwencje tego błyskawicznego rozwoju są odczuwalne w niemal każdej dziedzinie. Wydaje się, że to jedna z tych technologii, które powinny być dostępne dla jak najszerszej grupy ludzi. Dopiero wtedy uczenie głębokie wykorzysta w pełni swój potencjał i stanie się prawdziwym impulsem rozwoju naszej cywilizacji. Co prawda na pierwszy rzut oka ta niesamowita technologia może wydawać się wyjątkowo skomplikowana i trudna do zrozumienia, warto jednak wykorzystać dostępne narzędzia, takie jak biblioteka Keras i język R, aby implementować mechanizmy uczenia głębokiego wszędzie tam, gdzie okażą się przydatne. Ta książka jest znakomitym przewodnikiem po technikach uczenia głębokiego. Poza wyczerpująco przedstawionymi podstawami znajdziesz tu zasady implementacji tych technik z wykorzystaniem języka R i biblioteki Keras. Dzięki przystępnym wyjaśnieniom i praktycznym przykładom szybko zrozumiesz nawet bardziej skomplikowane zagadnienia uczenia głębokiego. Poznasz koncepcje i dobre praktyki związane z tworzeniem mechanizmów analizy obrazu, przetwarzania języka naturalnego i modeli generatywnych. Przeanalizujesz ponad 30 przykładów kodu uzupełnionego dokładnymi komentarzami. W efekcie szybko przygotujesz się do korzystania z uczenia głębokiego w rozwiązywaniu konkretnych problemów. W tej książce między innymi: podstawowe koncepcje sztucznej inteligencji, uczenia maszynowego i uczenia głębokiego wprowadzenie do budowy i trenowania sieci neuronowych uczenie głębokie w przetwarzaniu obrazów modele generatywne tworzące obrazy i tekst perspektywy i ograniczenia uczenia głębokiego Uczenie głębokie: zafascynuj się i zaimplementuj!

697
Ebook

Deep Learning Quick Reference. Useful hacks for training and optimizing deep neural networks with TensorFlow and Keras

Mike Bernico

Deep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples.You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks.By the end of this book, you will be able to solve real-world problems quickly with deep neural networks.

698
Ebook

Deep Learning. Uczenie głębokie z językiem Python. Sztuczna inteligencja i sieci neuronowe

Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants

Na naszych oczach dokonuje się przełom: technologie wykorzystujące rozmaite formy sztucznej inteligencji zaczynają się pojawiać w różnych branżach. Niektórzy nawet nie zdają sobie sprawy, jak często i jak powszechnie stosuje się algorytmy uczenia głębokiego. Możliwości w tym zakresie stale rosną. Wzrasta też zapotrzebowanie na inżynierów, którzy swobodnie operują wiedzą o uczeniu głębokim i są w stanie zaimplementować potrzebne algorytmy w konkretnym oprogramowaniu. Uczenie głębokie jest jednak dość złożonym zagadnieniem, a przyswojenie sobie potrzebnych umiejętności wymaga wysiłku. Ta książka stanowi doskonałe wprowadzenie w temat uczenia głębokiego. Wyjaśniono tu najważniejsze pojęcia uczenia maszynowego. Pokazano, do czego mogą się przydać takie narzędzia jak pakiet scikit-learn, biblioteki Theano, Keras czy TensorFlow. Ten praktyczny przewodnik znakomicie ułatwi zrozumienie zagadnień rozpoznawania wzorców, dokładnego skalowania danych, pozwoli też na rzetelne zapoznanie się z algorytmami i technikami uczenia głębokiego. Autorzy zaproponowali wykorzystanie w powyższych celach języka Python - ulubionego narzędzia wielu badaczy i pasjonatów nauki. W książce między innymi: Solidne podstawy uczenia maszynowego i sieci neuronowych Trening systemów sztucznej inteligencji w grach komputerowych Rozpoznawanie obrazów Rekurencyjne sieci neuronowej w modelowaniu języka Budowa systemów wykrywania oszustw i włamań Uczenie głębokie: zajrzyj w przyszłość programowania! Dr Valentino Zokka opracował wiele algorytmów matematycznych i modeli prognostycznych dla firmy Boeing. Obecnie jest konsultantem w branży finansowej. Gianmario Spacagna pracuje w firmie Pirelli, gdzie buduje systemy maszynowego uczenia się i kompletne rozwiązania do produktów informacyjnych. Daniel Slater tworzył oprogramowanie do oceny ryzyka dla branży finansowej. Obecnie zajmuje się systemami do przetwarzania dużych ilości danych i analizy zachowań użytkowników. Peter Roelants specjalizuje się w stosowaniu technik uczenia głębokiego do badań spektralnych obrazów, rozpoznawania mowy czy ekstrakcji danych z dokumentów.

699
Ebook

Deep Learning with fastai Cookbook. Leverage the easy-to-use fastai framework to unlock the power of deep learning

Mark Ryan

fastai is an easy-to-use deep learning framework built on top of PyTorch that lets you rapidly create complete deep learning solutions with as few as 10 lines of code. Both predominant low-level deep learning frameworks, TensorFlow and PyTorch, require a lot of code, even for straightforward applications. In contrast, fastai handles the messy details for you and lets you focus on applying deep learning to actually solve problems.The book begins by summarizing the value of fastai and showing you how to create a simple 'hello world' deep learning application with fastai. You'll then learn how to use fastai for all four application areas that the framework explicitly supports: tabular data, text data (NLP), recommender systems, and vision data. As you advance, you'll work through a series of practical examples that illustrate how to create real-world applications of each type. Next, you'll learn how to deploy fastai models, including creating a simple web application that predicts what object is depicted in an image. The book wraps up with an overview of the advanced features of fastai.By the end of this fastai book, you'll be able to create your own deep learning applications using fastai. You'll also have learned how to use fastai to prepare raw datasets, explore datasets, train deep learning models, and deploy trained models.

700
Ebook

Deep Learning with Keras. Implementing deep learning models and neural networks with the power of Python

Antonio Gulli, Sujit Pal

This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided.Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer.Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.

701
Ebook

Deep Learning with Microsoft Cognitive Toolkit Quick Start Guide. A practical guide to building neural networks using Microsoft's open source deep learning framework

Willem Meints

Cognitive Toolkit is a very popular and recently open sourced deep learning toolkit by Microsoft. Cognitive Toolkit is used to train fast and effective deep learning models. This book will be a quick introduction to using Cognitive Toolkit and will teach you how to train and validate different types of neural networks, such as convolutional and recurrent neural networks.This book will help you understand the basics of deep learning. You will learn how to use Microsoft Cognitive Toolkit to build deep learning models and discover what makes this framework unique so that you know when to use it. This book will be a quick, no-nonsense introduction to the library and will teach you how to train different types of neural networks, such as convolutional neural networks, recurrent neural networks, autoencoders, and more, using Cognitive Toolkit. Then we will look at two scenarios in which deep learning can be used to enhance human capabilities. The book will also demonstrate how to evaluate your models' performance to ensure it trains and runs smoothly and gives you the most accurate results. Finally, you will get a short overview of how Cognitive Toolkit fits in to a DevOps environment

702
Ebook

Deep Learning with MXNet Cookbook. Discover an extensive collection of recipes for creating and implementing AI models on MXNet

Andrés P. Torres, Paul Newman

Explore the capabilities of the open-source deep learning framework MXNet to train and deploy neural network models and implement state-of-the-art (SOTA) architectures in Computer Vision, natural language processing, and more. The Deep Learning with MXNet Cookbook is your gateway to constructing fast and scalable deep learning solutions using Apache MXNet.Starting with the different versions of MXNet, this book helps you choose the optimal version for your use and install your library. You’ll work with MXNet/Gluon libraries to solve classification and regression problems and gain insights into their inner workings. Venturing further, you’ll use MXNet to analyze toy datasets in the areas of numerical regression, data classification, picture classification, and text classification. From building and training deep-learning neural network architectures from scratch to delving into advanced concepts such as transfer learning, this book covers it all. You'll master the construction and deployment of neural network architectures, including CNN, RNN, LSTMs, and Transformers, and integrate these models into your applications.By the end of this deep learning book, you’ll wield the MXNet and Gluon libraries to expertly create and train deep learning networks using GPUs and deploy them in different environments.

703
Ebook

Deep Learning with PyTorch. A practical approach to building neural network models using PyTorch

Vishnu Subramanian

Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, TensorFlow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of text, vision, and advanced analytics. This book will get you up and running with one of the most cutting-edge deep learning libraries—PyTorch. PyTorch is grabbing the attention of deep learning researchers and data science professionals due to its accessibility, efficiency and being more native to Python way of development. You'll start off by installing PyTorch, then quickly move on to learn various fundamental blocks that power modern deep learning. You will also learn how to use CNN, RNN, LSTM and other networks to solve real-world problems. This book explains the concepts of various state-of-the-art deep learning architectures, such as ResNet, DenseNet, Inception, and Seq2Seq, without diving deep into the math behind them. You will also learn about GPU computing during the course of the book. You will see how to train a model with PyTorch and dive into complex neural networks such as generative networks for producing text and images. By the end of the book, you'll be able to implement deep learning applications in PyTorch with ease.

704
Ebook

Deep Learning with PyTorch Lightning. Swiftly build high-performance Artificial Intelligence (AI) models using Python

Kunal Sawarkar

Building and implementing deep learning (DL) is becoming a key skill for those who want to be at the forefront of progress.But with so much information and complex study materials out there, getting started with DL can feel quite overwhelming.Written by an AI thought leader, Deep Learning with PyTorch Lightning helps researchers build their first DL models quickly and easily without getting stuck on the complexities. With its help, you’ll be able to maximize productivity for DL projects while ensuring full flexibility – from model formulation to implementation.Throughout this book, you’ll learn how to configure PyTorch Lightning on a cloud platform, understand the architectural components, and explore how they are configured to build various industry solutions. You’ll build a neural network architecture, deploy an application from scratch, and see how you can expand it based on your specific needs, beyond what the framework can provide.In the later chapters, you’ll also learn how to implement capabilities to build and train various models like Convolutional Neural Nets (CNN), Natural Language Processing (NLP), Time Series, Self-Supervised Learning, Semi-Supervised Learning, Generative Adversarial Network (GAN) using PyTorch Lightning.By the end of this book, you’ll be able to build and deploy DL models with confidence.