IT business

Online books from the category IT Business will help you tackle such technical issues as data analysis, blockchain, or programming. You will also find here amazing publications about internet advertisement and all kinds of information on how to run business online. Besides, they teach how to analyse marketing data and how to build good relationships with clients.

1121
Ebook

Power Query w Excelu i Power BI. Zbieranie i przekształcanie danych

Gil Raviv

Czy praca na danych kojarzy Ci się z frustrującym ręcznym wklejaniem i oczyszczaniem danych w Excelu? A może tracisz mnóstwo energii na importowanie nieuporządkowanych danych pochodzących z różnych źródeł? Być może podejrzewasz, że Twoje arkusze kryją mnóstwo wartościowych informacji, ale nie wiesz, w jaki sposób je wydobyć i ile godzin musisz na to poświęcić? A może spędzasz sporo czasu na tworzeniu skomplikowanych raportów w Power BI lub programowaniu baz danych SQL Server? Dzięki wiedzy zawartej w tej książce wykonasz te zadania prościej i szybciej, a efekty będą o wiele bardziej niezawodne! Ten praktyczny przewodnik po narzędziu Power Query nauczy Cię efektywnie przetwarzać dane w Excelu: importować, oczyszczać, przekształcać i wydobywać potrzebne informacje. Dowiesz się, jak sprawnie wykonywać typowe zadania i prace analityczne, jak zwiększyć swoją skuteczność dzięki opanowaniu podstaw języka M oraz jak zautomatyzować proces przygotowywania danych do przetwarzania. Zapoznasz się z możliwościami Microsoft Cognitive Services oraz konektora Power Query Web, a także z wykorzystaniem sztucznej inteligencji do rozpoznawania treści tekstu. Nabyte umiejętności będziesz mógł przetestować w realistycznym projekcie, któremu poświęcono ostatni rozdział! W książce między innymi: solidne podstawy pracy z narzędziem Power Query automatyzacja operacji na danych proste i zaawansowane techniki dekompozycji tabel tworzenie procedur w języku M pozyskiwanie informacji z danych tekstowych i sieci społecznościowych Power Query i Power BI: sprostasz wyzwaniu przetwarzania danych!

1122
Ebook

Poznaj Microsoft Power BI. Przekształcanie danych we wnioski

Jeremey Arnold

Microsoft Power BI jest narzędziem do analizowania i wizualizacji danych - na tyle potężnym, aby móc sprostać potrzebom nawet najbardziej wymagających danologów, a jednocześnie na tyle przystępnym, aby mogło być używane na co dzień przez każdego, kto chce uzyskać więcej informacji ze swoich danych. Na rynku dostępnych jest wiele książek projektowanych pod kątem szkolenia profesjonalnych analityków danych z obsługi Power BI, jednak niewiele z nich czyni to narzędzie przystępnym dla osób, które chciałyby samodzielnie nadrobić zaległości. To usprawnione wprowadzenie do Power BI obejmuje wszystkie podstawowe aspekty i funkcje pozwalające przejść "od zera do bohatera" w pracy z danymi i wizualizacjami. Bez względu na to, czy pracujesz z dużymi złożonymi zbiorami danych, czy też pracujesz w programie Microsoft Excel, autor Jeremey Arnold pokazuje Ci, jak nauczyć się Power BI i używać go jako zwykłego narzędzia do analizowania i raportowania danych. Nauczysz się: - Importować, manipulować, wizualizować i badać dane w Power BI - Znajdować rozwiązania dla samoobsługi i analizy biznesowej dla przedsiębiorstw - Wykorzystywać Power BI w strategii analizy biznesowej swojej organizacji - Tworzyć efektywne raporty i pulpity nawigacyjne - Tworzyć środowiska do udostępniania raportów i zarządzania dostępem do danych w obrębie swojego zespołu - Określać właściwe rozwiązania w zakresie wykorzystywania oferty Power BI, w zależności od potrzeb związanych z rozmiarem, bezpieczeństwem i złożonością obliczeń Jeremey Arnold jest starszym architektem analizy danych w Onebridge, dużej firmie konsultingowej zajmującej się analizowaniem danych, z siedzibą w Indianapolis w stanie Indiana. Jeremey analizą danych zajmuje się od ponad dekady, a z narzędzia Microsoft Power BI korzysta od czasu jego wydania w roku 2013. Jego doświadczenie rozciąga się na wiele różnych sektorów, w tym opiekę zdrowotną, finanse, produkcję czy sektor publiczny. W swojej pracy skupia się głównie na przekształcaniu danych we wnioski i tworzeniu środowisk opartych na danych.

1123
Ebook

Poznaj Tableau 2022. Wizualizacja danych, interaktywna analiza danych i umiejętność data storytellingu. Wydanie V

Joshua N. Milligan

Dane stały się paliwem rozwoju cywilizacji. Wykorzystanie ich potencjału jest jednak trudne: problemem okazuje się wyciąganie z nich informacji i wniosków, aby można było na ich podstawie podejmować trafne decyzje. Jednym z narzędzi ułatwiających tę pracę jest Tableau - program do analityki danych, który umożliwia ich zrozumienie, interpretację i prowadzenie na nich efektywnych działań. Dzięki tej książce płynnie rozpoczniesz pracę z Tableau 2022 i nauczysz się wizualizacji danych. Dowiesz się, jak je analizować i przedstawiać w formie graficznej, a także jak opowiadać oparte na nich historie. W tym wydaniu ujęto najnowsze funkcje programu, między innymi rozszerzenia pulpitów nawigacyjnych, Explain Data i integrację z CRM Analytics (Einstein Analytics), służącym do modelowania predyktywnego w Tableau. Pokazano również, jak używać tabel i obliczeń na różnych poziomach szczegółowości i stosować wizualną analitykę statystyczną. Następnie zademonstrowano techniki łączenia różnych źródeł danych z funkcjonalnościami modeli danych Tableau wraz z mapami i wizualizacjami geoprzestrzennymi. Z tego przewodnika dowiesz się też, jak korzystać z funkcji Tableau Prep Builder, by skutecznie oczyścić i zorganizować dane. Dzięki książce nauczysz się: tworzyć zachwycające wizualizacje złożonych danych budować interaktywne pulpity nawigacyjne korzystać z obliczeń w celu rozwiązywania problemów i uzupełniania analiz wzbogacać możliwości Tableau poprzez rozszerzenia, skrypty i CRM Analytics oczyszczać i organizować dane w Tableau tworzyć angażujące historie oparte na danych Przekonaj się, co Tableau wyczaruje z Twoich danych!

1124
Ebook

Practical Big Data Analytics. Hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R

Nataraj Dasgupta

Big Data analytics relates to the strategies used by organizations to collect, organize, and analyze large amounts of data to uncover valuable business insights that cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization’s data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages, and BI tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology and the practical reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB, and even learn how to write R code for neural networks.By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using the different tools and methods articulatedin this book.

1125
Ebook

Practical Business Intelligence. Optimize Business Intelligence for Efficient Data Analysis

Ahmed Sherif

Business Intelligence (BI) is at the crux of revolutionizing enterprise. Everyone wants to minimize losses and maximize profits. Thanks to Big Data and improved methodologies to analyze data, Data Analysts and Data Scientists are increasingly using data to make informed decisions. Just knowing how to analyze data is not enough, you need to start thinking how to use data as a business asset and then perform the right analysis to build an insightful BI solution. Efficient BI strives to achieve the automation of data for ease of reporting and analysis. Through this book, you will develop the ability to think along the right lines and use more than one tool to perform analysis depending on the needs of your business. We start off by preparing you for data analytics. We then move on to teach you a range of techniques to fetch important information from various databases, which can be used to optimize your business.The book aims to provide a full end-to-end solution for an environment setup that can help you make informed business decisions and deliver efficient and automated BI solutions to any company.It is a complete guide for implementing Business intelligence with the help of the most powerful tools like D3.js, R, Tableau, Qlikview and Python that are available on the market.

1126
Ebook

Practical Change Management for IT Projects. Transform your IT project and make change stick with this step-by-step guide with this book and

Emily Carr

Transform your IT project and make change stick with this step-by-step guide.In today’s fast-paced world of change, companies expect you to do more, with less. Drawing on over a decade of Change Management experience as a consultant with Fortune 500 companies including IBM and NCR, Emily Carr shares the secrets to making change happen smoothly.If your company is like most, the number one reason that projects have failed over the years don’t have to do with technology. They have to do with people. People didn’t like the new technology. People weren’t trained properly on the change. People hadn’t received adequate communications and didn’t understand the change. Sound familiar?Project teams rarely forget to work on the technology, but they often forget to work with the people, and no matter how amazing your new technology is, it’s useless unless people use it efficiently.This book will help you focus on the people.Packed with templates, checklists, and real-life examples, this user-friendly guide will provide you with the insights and guidance of an expert consultant, for a fraction of the price. You’ll follow a clearly laid out path from Change Management novice to confident and prepared change manager. You’ll be introduced to the Five Pillars of Change: Sponsorship, Stakeholder Management, Communication, Training, and Organization Design. You will work step-by-step through templates in each pillar to build and run a comprehensive Change Management plan tailor-made to your project and organization.

1127
Ebook

Practical Computer Vision. Extract insightful information from images using TensorFlow, Keras, and OpenCV

Abhinav Dadhich

In this book, you will find several recently proposed methods in various domains of computer vision. You will start by setting up the proper Python environment to work on practical applications. This includes setting up libraries such as OpenCV, TensorFlow, and Keras using Anaconda. Using these libraries, you'll start to understand the concepts of image transformation and filtering. You will find a detailed explanation of feature detectors such as FAST and ORB; you'll use them to find similar-looking objects.With an introduction to convolutional neural nets, you will learn how to build a deep neural net using Keras and how to use it to classify the Fashion-MNIST dataset. With regard to object detection, you will learn the implementation of a simple face detector as well as the workings of complex deep-learning-based object detectors such as Faster R-CNN and SSD using TensorFlow. You'll get started with semantic segmentation using FCN models and track objects with Deep SORT. Not only this, you will also use Visual SLAM techniques such as ORB-SLAM on a standard dataset. By the end of this book, you will have a firm understanding of the different computer vision techniques and how to apply them in your applications.

1128
Ebook

Practical Convolutional Neural Networks. Implement advanced deep learning models using Python

Mohit Sewak, Md. Rezaul Karim, Pradeep Pujari

Convolutional Neural Network (CNN) is revolutionizing several application domains such as visual recognition systems, self-driving cars, medical discoveries, innovative eCommerce and more.You will learn to create innovative solutions around image and video analytics to solve complex machine learning and computer vision related problems and implement real-life CNN models. This book starts with an overview of deep neural networkswith the example of image classification and walks you through building your first CNN for human face detector. We will learn to use concepts like transfer learning with CNN, and Auto-Encoders to build very powerful models, even when not much of supervised training data of labeled images is available.Later we build upon the learning achieved to build advanced vision related algorithms for object detection, instance segmentation, generative adversarial networks, image captioning, attention mechanisms for vision, and recurrent models for vision. By the end of this book, you should be ready to implement advanced, effective and efficient CNN models at your professional project or personal initiatives by working on complex image and video datasets.

1129
Ebook

Practical Data Analysis. For small businesses, analyzing the information contained in their data using open source technology could be game-changing. All you need is some basic programming and mathematical skills to do just that

Hector Cuesta

Plenty of small businesses face big amounts of data but lack the internal skills to support quantitative analysis. Understanding how to harness the power of data analysis using the latest open source technology can lead them to providing better customer service, the visualization of customer needs, or even the ability to obtain fresh insights about the performance of previous products. Practical Data Analysis is a book ideal for home and small business users who want to slice and dice the data they have on hand with minimum hassle.Practical Data Analysis is a hands-on guide to understanding the nature of your data and turn it into insight. It will introduce you to the use of machine learning techniques, social networks analytics, and econometrics to help your clients get insights about the pool of data they have at hand. Performing data preparation and processing over several kinds of data such as text, images, graphs, documents, and time series will also be covered.Practical Data Analysis presents a detailed exploration of the current work in data analysis through self-contained projects. First you will explore the basics of data preparation and transformation through OpenRefine. Then you will get started with exploratory data analysis using the D3js visualization framework. You will also be introduced to some of the machine learning techniques such as, classification, regression, and clusterization through practical projects such as spam classification, predicting gold prices, and finding clusters in your Facebook friends' network. You will learn how to solve problems in text classification, simulation, time series forecast, social media, and MapReduce through detailed projects. Finally you will work with large amounts of Twitter data using MapReduce to perform a sentiment analysis implemented in Python and MongoDB. Practical Data Analysis contains a combination of carefully selected algorithms and data scrubbing that enables you to turn your data into insight.

1130
Ebook

Practical Data Analysis. Pandas, MongoDB, Apache Spark, and more - Second Edition

Hector Cuesta, Dr. Sampath Kumar

Beyond buzzwords like Big Data or Data Science, there are a great opportunities to innovate in many businesses using data analysis to get data-driven products. Data analysis involves asking many questions about data in order to discover insights and generate value for a product or a service.This book explains the basic data algorithms without the theoretical jargon, and you’ll get hands-on turning data into insights using machine learning techniques. We will perform data-driven innovation processing for several types of data such as text, Images, social network graphs, documents, and time series, showing you how to implement large data processing with MongoDB and Apache Spark.

1131
Ebook

Practical Data Analysis Using Jupyter Notebook. Learn how to speak the language of data by extracting useful and actionable insights using Python

Marc Wintjen, Andrew Vlahutin

Data literacy is the ability to read, analyze, work with, and argue using data. Data analysis is the process of cleaning and modeling your data to discover useful information. This book combines these two concepts by sharing proven techniques and hands-on examples so that you can learn how to communicate effectively using data.After introducing you to the basics of data analysis using Jupyter Notebook and Python, the book will take you through the fundamentals of data. Packed with practical examples, this guide will teach you how to clean, wrangle, analyze, and visualize data to gain useful insights, and you'll discover how to answer questions using data with easy-to-follow steps.Later chapters teach you about storytelling with data using charts, such as histograms and scatter plots. As you advance, you'll understand how to work with unstructured data using natural language processing (NLP) techniques to perform sentiment analysis. All the knowledge you gain will help you discover key patterns and trends in data using real-world examples. In addition to this, you will learn how to handle data of varying complexity to perform efficient data analysis using modern Python libraries.By the end of this book, you'll have gained the practical skills you need to analyze data with confidence.

1132
Ebook

Practical Data Quality. Learn practical, real-world strategies to transform the quality of data in your organization

Robert Hawker, Nicola Askham

Poor data quality can lead to increased costs, hinder revenue growth, compromise decision-making, and introduce risk into organizations. This leads to employees, customers, and suppliers finding every interaction with the organization frustrating.Practical Data Quality provides a comprehensive view of managing data quality within your organization, covering everything from business cases through to embedding improvements that you make to the organization permanently. Each chapter explains a key element of data quality management, from linking strategy and data together to profiling and designing business rules which reveal bad data. The book outlines a suite of tried-and-tested reports that highlight bad data and allow you to develop a plan to make corrections. Throughout the book, you’ll work with real-world examples and utilize re-usable templates to accelerate your initiatives.By the end of this book, you’ll have gained a clear understanding of every stage of a data quality initiative and be able to drive tangible results for your organization at pace.

1133
Ebook

Practical Data Science Cookbook. Data pre-processing, analysis and visualization using R and Python - Second Edition

Prabhanjan Narayanachar Tattar, Bhushan Purushottam Joshi, Sean Patrick Murphy, ABHIJIT DASGUPTA, ...

As increasing amounts of data are generated each year, the need to analyze and create value out of it is more important than ever. Companies that know what to do with their data and how to do it well will have a competitive advantage over companies that don’t. Because of this, there will be an increasing demand for people that possess both the analytical and technical abilities to extract valuable insights from data and create valuable solutions that put those insights to use. Starting with the basics, this book covers how to set up your numerical programming environment, introduces you to the data science pipeline, and guides you through several data projects in a step-by-step format. By sequentially working through the steps in each chapter, you will quickly familiarize yourself with the process and learn how to apply it to a variety of situations with examples using the two most popular programming languages for data analysis—R and Python.

1134
Ebook

Practical Data Wrangling. Expert techniques for transforming your raw data into a valuable source for analytics

Allan Visochek

Around 80% of time in data analysis is spent on cleaning and preparing data for analysis. This is, however, an important task, and is a prerequisite to the rest of the data analysis workflow, including visualization, analysis and reporting. Python and R are considered a popular choice of tool for data analysis, and have packages that can be best used to manipulate different kinds of data, as per your requirements. This book will show you the different data wrangling techniques, and how you can leverage the power of Python and R packages to implement them.You’ll start by understanding the data wrangling process and get a solid foundation to work with different types of data. You’ll work with different data structures and acquire and parse data from various locations. You’ll also see how to reshape the layout of data and manipulate, summarize, and join data sets. Finally, we conclude with a quick primer on accessing and processing data from databases, conducting data exploration, and storing and retrieving data quickly using databases.The book includes practical examples on each of these points using simple and real-world data sets to give you an easier understanding. By the end of the book, you’ll have a thorough understanding of all the data wrangling concepts and how to implement them in the best possible way.

1135
Ebook

Practical Deep Learning at Scale with MLflow. Bridge the gap between offline experimentation and online production

Yong Liu, Dr. Matei Zaharia

The book starts with an overview of the deep learning (DL) life cycle and the emerging Machine Learning Ops (MLOps) field, providing a clear picture of the four pillars of deep learning: data, model, code, and explainability and the role of MLflow in these areas.From there onward, it guides you step by step in understanding the concept of MLflow experiments and usage patterns, using MLflow as a unified framework to track DL data, code and pipelines, models, parameters, and metrics at scale. You’ll also tackle running DL pipelines in a distributed execution environment with reproducibility and provenance tracking, and tuning DL models through hyperparameter optimization (HPO) with Ray Tune, Optuna, and HyperBand. As you progress, you’ll learn how to build a multi-step DL inference pipeline with preprocessing and postprocessing steps, deploy a DL inference pipeline for production using Ray Serve and AWS SageMaker, and finally create a DL explanation as a service (EaaS) using the popular Shapley Additive Explanations (SHAP) toolbox.By the end of this book, you’ll have built the foundation and gained the hands-on experience you need to develop a DL pipeline solution from initial offline experimentation to final deployment and production, all within a reproducible and open source framework.

1136
Ebook

Practical GIS. Learn novice to advanced topics such as QGIS, Spatial data analysis, and more

Gábor Farkas

The most commonly used GIS tools automate tasks that were historically done manually—compiling new maps by overlaying one on top of the other or physically cutting maps into pieces representing specific study areas, changing their projection, and getting meaningful results from the various layers by applying mathematical functions and operations. This book is an easy-to-follow guide to use the most matured open source GIS tools for these tasks.We’ll start by setting up the environment for the tools we use in the book. Then you will learn how to work with QGIS in order to generate useful spatial data. You will get to know the basics of queries, data management, and geoprocessing.After that, you will start to practice your knowledge on real-world examples. We will solve various types of geospatial analyses with various methods. We will start with basic GIS problems by imitating the work of an enthusiastic real estate agent, and continue with more advanced, but typical tasks by solving a decision problem. Finally, you will find out how to publish your data (and results) on the web. We will publish our data with QGIS Server and GeoServer, and create a basic web map with the API of the lightweight Leaflet web mapping library.