Autor: Duygu Altinok
1
Ebook

Mastering spaCy. An end-to-end practical guide to implementing NLP applications using the Python ecosystem

Duygu Altinok

spaCy is an industrial-grade, efficient NLP Python library. It offers various pre-trained models and ready-to-use features. Mastering spaCy provides you with end-to-end coverage of spaCy's features and real-world applications.You'll begin by installing spaCy and downloading models, before progressing to spaCy's features and prototyping real-world NLP apps. Next, you'll get familiar with visualizing with spaCy's popular visualizer displaCy. The book also equips you with practical illustrations for pattern matching and helps you advance into the world of semantics with word vectors. Statistical information extraction methods are also explained in detail. Later, you'll cover an interactive business case study that shows you how to combine all spaCy features for creating a real-world NLP pipeline. You'll implement ML models such as sentiment analysis, intent recognition, and context resolution. The book further focuses on classification with popular frameworks such as TensorFlow's Keras API together with spaCy. You'll cover popular topics, including intent classification and sentiment analysis, and use them on popular datasets and interpret the classification results.By the end of this book, you'll be able to confidently use spaCy, including its linguistic features, word vectors, and classifiers, to create your own NLP apps.

2
Ebook

Mastering spaCy. Build structured NLP solutions with custom components and models powered by spacy-llm - Second Edition

Déborah Mesquita, Duygu Altinok

Mastering spaCy, Second Edition is your comprehensive guide to building sophisticated NLP applications using the spaCy ecosystem. This revised edition embraces the latest advancements in NLP, featuring new chapters on Large Language Models with spaCy-LLM, transformers integration, and end-to-end workflow management with Weasel.With this new edition you’ll learn to enhance NLP tasks using LLMs with spaCy-llm, manage end-to-end workflows using Weasel and integrating spaCy with third-party libraries like Streamlit, FastAPI, and DVC. From training custom named entity recognition (NER) pipelines to categorizing emotions in Reddit posts, readers will explore advanced topics like text classification and coreference resolution. This book takes you on a journey through spaCy’s capabilities, starting with the fundamentals of NLP, such as tokenization, named entity recognition, and dependency parsing. As you progress, you’ll delve into advanced topics like creating custom components, training domain-specific models, and building scalable NLP workflows.By end of the book, through practical examples, clear explanations, tips and tricks you will be empowered to build robust NLP pipelines and integrate them with web applications to build end-to-end solutions.