Ebooks
3817
Ebook

Big Data Analytics with SAS. Get actionable insights from your Big Data using the power of SAS

David Pope

SAS has been recognized by Money Magazine and Payscale as one of the top business skills to learn in order to advance one’s career. Through innovative data management, analytics, and business intelligence software and services, SAS helps customers solve their business problems by allowing them to make better decisions faster. This book introduces the reader to the SAS and how they can use SAS to perform efficient analysis on any size data, including Big Data.The reader will learn how to prepare data for analysis, perform predictive, forecasting, and optimization analysis and then deploy or report on the results of these analyses. While performing the coding examples within this book the reader will learn how to use the web browser based SAS Studio and iPython Jupyter Notebook interfaces for working with SAS. Finally, the reader will learn how SAS’s architecture is engineered and designed to scale up and/or out and be combined with the open source offerings such as Hadoop, Python, and R. By the end of this book, you will be able to clearly understand how you can efficiently analyze Big Data using SAS.

3818
Ebook

Big Data Architect's Handbook. A guide to building proficiency in tools and systems used by leading big data experts

Syed Muhammad Fahad Akhtar

The big data architects are the “masters” of data, and hold high value in today’s market. Handling big data, be it of good or bad quality, is not an easy task. The prime job for any big data architect is to build an end-to-end big data solution that integrates data from different sources and analyzes it to find useful, hidden insights.Big Data Architect’s Handbook takes you through developing a complete, end-to-end big data pipeline, which will lay the foundation for you and provide the necessary knowledge required to be an architect in big data. Right from understanding the design considerations to implementing a solid, efficient, and scalable data pipeline, this book walks you through all the essential aspects of big data. It also gives you an overview of how you can leverage the power of various big data tools such as Apache Hadoop and ElasticSearch in order to bring them together and build an efficient big data solution.By the end of this book, you will be able to build your own design system which integrates, maintains, visualizes, and monitors your data. In addition, you will have a smooth design flow in each process, putting insights in action.

3819
Ebook
3820
Ebook

Big Data. Krótkie Wprowadzenie 30

Dawn E. Holmes

KRÓTKIE WPROWADZENIE - książki, które zmieniają sposób myślenia! Big data pokazuje, jak postęp technologiczny spowodowany rozwojem Internetu i cyfrowego wszechświata wpłynął na radykalną transformację nauki o danych. Czym są duże zbiory danych i jak zmieniają świat? Jaki mają wpływ na nasze codzienne życie, a jaki na świat biznesu? W tej książce czytelnik znajdzie odpowiedzi na te pytania. * Interdyscyplinarna seria KRÓTKIE WPROWADZENIE piórem uznanych ekspertów skupionych wokół Uniwersytetu Oksfordzkiego przybliża aktualną wiedzę na temat współczesnego świata i pomaga go zrozumieć. W atrakcyjny sposób prezentuje najważniejsze zagadnienia XXI w. - od kultury, religii, historii przez nauki przyrodnicze po technikę. To publikacje popularnonaukowe, które w formule przystępnej, dalekiej od akademickiego wykładu, prezentują wybrane kwestie. Książki idealne zarówno jako wprowadzenie do nowych tematów, jak i uzupełnienie wiedzy o tym, co nas pasjonuje. Najnowsze fakty, analizy ekspertów, błyskotliwe interpretacje. Opiekę merytoryczną nad polską edycją serii sprawują naukowcy z Uniwersytetu Łódzkiego: prof. Krystyna Kujawińska Courtney, prof. Ewa Gajewska, prof. Aneta Pawłowska, prof. Jerzy Gajdka, prof. Piotr Stalmaszczyk.

3821
Ebook

Big Data. Najlepsze praktyki budowy skalowalnych systemów obsługi danych w czasie rzeczywistym

Nathan Marz, James Warren

Obsługa aplikacji, które operują na ogromnych zbiorach danych, czyli na przykład portali społecznościowych, przekracza możliwości zwykłych relacyjnych baz. Praca ze złożonymi zbiorami danych wymaga architektury obejmującej wielomaszynowe klastry, dzięki którym możliwe jest przechowywanie i przesyłanie informacji praktycznie dowolnej wielkości. Architektura taka powinna dodatkowo być prosta w użyciu, niezawodna i skalowalna. Dzięki tej książce nauczysz się budować tego rodzaju architekturę. Zapoznasz się z technologią wykorzystywania klastrów maszyn. Dowiesz się, jak działają narzędzia przeznaczone specjalnie do przechwytywania i analizy danych na wielką skalę. W książce zaprezentowano łatwe do zrozumienia podejście do obsługi systemów wielkich zbiorów danych, które mogą być budowane i uruchamiane przez niewielki zespół. Nie zabrakło też wyczerpującego opisu praktycznej implementacji systemu Big Data z wykorzystaniem rzeczywistego przykładu. W tej książce znajdziesz: teoretyczne podstawy koncepcji systemów Big Data wskazówki umożliwiające optymalne wykorzystanie zasobów do obsługi danych wybór technik przetwarzania i obsługi wielkich ilości danych w czasie rzeczywistym zagadnienia dotyczące baz danych NoSQL, przetwarzania strumieniowego i zarządzania złożonością obliczeń przyrostowych informacje o praktycznym stosowaniu takich narzędzi jak Hadoop, Cassandra i Storm wskazówki umożliwiające poszerzenie wiedzy o zwykłych bazach danych Big Data — to skalowalność i prostota obsługi wielkich ilości danych!

3822
Ebook

Big data, nauka o danych i AI bez tajemnic. Podejmuj lepsze decyzje i rozwijaj swój biznes!

David Stephenson

Koncepcja big data zmieniła zasady gry w biznesie. Wiele osób z kadry zarządczej nie rozumie specyfiki tego rodzaju danych: ogromnych, szybko narastających, często niepasujących do tradycyjnej struktury. Są one zasadniczo różne od konwencjonalnych danych, zarówno pod względem wielkości, jak i złożoności. Rzucają nowe wyzwania, stwarzają nowe możliwości, zacierają tradycyjne granice konkurencji i zmuszają do zmiany paradygmatów pozyskiwania wartości z danych. Big data i data science wraz z uczeniem maszynowym radykalnie zmieniają ekosystem biznesu. Aby przetrwać tę rewolucję, trzeba dostosować się do nowych warunków. Ta książka jest przystępnym wprowadzeniem do koncepcji big data i data science. Pozwoli na uzyskanie wiedzy niezbędnej do oceny, czy korzyści z tych technologii są warte kosztów i wysiłku związanych z wdrożeniem w firmie. Poszczególne techniki zostały dokładnie i przejrzyście opisane. Przedstawiono zasady tworzenia odpowiednich strategii. Wyjaśniono, jakich zasobów i jakich ludzi potrzeba do przeprowadzenia transformacji w kierunku zbierania, analizy i wykorzystywania danych, a także omówiono związane z tym ryzyko. Ważnym elementem książki są praktyczne wskazówki i podpowiedzi. W tej książce: podstawy big data, data science i sztucznej inteligencji praktyczne zastosowanie big data w technikach analitycznych przegląd podstawowych rodzajów analityki i dobór technologii przygotowanie firmy do wdrożenia projektów big data i data science wymagania prawne i ochrona danych a korzystanie z narzędzi big data Big data: łatwiejsze, niż myślisz, skuteczniejsze, niż marzysz!

3823
Ebook

Big Data on Kubernetes. A practical guide to building efficient and scalable data solutions

Neylson Crepalde

In today's data-driven world, organizations across different sectors need scalable and efficient solutions for processing large volumes of data. Kubernetes offers an open-source and cost-effective platform for deploying and managing big data tools and workloads, ensuring optimal resource utilization and minimizing operational overhead. If you want to master the art of building and deploying big data solutions using Kubernetes, then this book is for you.Written by an experienced data specialist, Big Data on Kubernetes takes you through the entire process of developing scalable and resilient data pipelines, with a focus on practical implementation. Starting with the basics, you’ll progress toward learning how to install Docker and run your first containerized applications. You’ll then explore Kubernetes architecture and understand its core components. This knowledge will pave the way for exploring a variety of essential tools for big data processing such as Apache Spark and Apache Airflow. You’ll also learn how to install and configure these tools on Kubernetes clusters. Throughout the book, you’ll gain hands-on experience building a complete big data stack on Kubernetes.By the end of this Kubernetes book, you’ll be equipped with the skills and knowledge you need to tackle real-world big data challenges with confidence.

3824
Ebook

Big Data Using Hadoop and Hive. Master Big Data Solutions with Hadoop and Hive

Mercury Learning and Information, Nitin Kumar

This book is a guide for developers and engineers to use Hadoop and Hive for scalable big data applications. It covers reading, writing, and managing large datasets with Hive and provides a concise introduction to Apache Hadoop and Hive, detailing their collaboration to simplify development. Through clear examples, the book explains the logic, code, and configurations needed for building successful distributed applications.The course starts with an introduction to big data and Apache Hadoop fundamentals. It then covers the Hadoop Distributed Filesystem and how to get started with Hadoop. The journey continues with interfaces to access HDFS files, resource management with Yet Another Resource Negotiator, and MapReduce for data processing. The book also explores Hive architecture, storage types, and the Hive query language.Mastering these concepts is vital for creating scalable big data solutions. This book ensures a smooth transition from novice to proficient Hadoop and Hive user, providing practical skills and comprehensive knowledge. By the end, readers will be able to set up, configure, and optimize Hadoop, utilize Hive for data management, and effectively solve big data challenges.