Autor: David Foster
1
E-book

Deep learning i modelowanie generatywne. Jak nauczyć komputer malowania, pisania, komponowania i grania

David Foster

Techniki uczenia głębokiego rozwijają się w imponującym tempie, a sieci neuronowe znajdują zastosowanie w przeróżnych branżach. Coraz częściej komputer wykonuje zadania, które do niedawna były zarezerwowane dla człowieka. Dobrym przykładem jest tworzenie dzieł sztuki: ostatnie postępy w dziedzinie modelowania generatywnego sprawiają, że maszyny tworzą oryginalne obrazy w określonym stylu, piszą spójne akapity tekstu, komponują przyjemną w odbiorze muzykę i generują prawdopodobne scenariusze zdarzeń. Ta "generatywna rewolucja" już się zaczęła, a jej efekty przekraczają najśmielsze wyobrażenia. Ta książka jest praktycznym przewodnikiem przeznaczonym dla inżynierów uczenia maszynowego i analityków danych. W jasny i przystępny sposób omówiono w niej zasadnicze zagadnienia teorii modelowania generatywnego, a następnie zaprezentowano techniki stosowane do budowy modeli generatywnych, włącznie z ogólnym opisem uczenia głębokiego, wariacyjnych autoenkoderów i generatywnych sieci antagonistycznych (GAN). Na tej podstawie - z wykorzystaniem biblioteki Keras - pokazano wewnętrzne funkcjonowanie każdej z tych technik, łącznie z najbardziej nowatorskimi architekturami. Opisano krok po kroku sposoby rozwiązywania takich twórczych zadań jak malowanie, pisanie i komponowanie muzyki, a także zastosowania modelowania generatywnego do optymalizacji strategii grania w gry (modele World). W książce między innymi: działanie autoenkoderów wariacyjnych tworzenie sieci GAN, w tym CycleGAN i MuseGAN rekurencyjne modele generatywne do tworzenia tekstu oraz mechanizmy uwagi modele generatywne w środowiskach uczenia przez wzmacnianie architektura Transformer (BERT, GPT-2) oraz modele generowania obrazu Czy potrafisz stworzyć... twórcę?

2
E-book

Generatywne głębokie uczenie, wyd. II. Uczenie maszyn, jak malować, pisać, komponować i grać

David Foster

Generatywna sztuczna inteligencja (AI) jest dziś gorącym tematem w dziedzinie techniki. Ta praktyczna książka pokazuje inżynierom uczenia się maszyn, jak wykorzystywać TensorFlow i Keras, aby od zera tworzyć robiące wrażenie generatywne modele głębokiego uczenia, w tym wariacyjne autokodowanie (VAE), generatywne sieci przeciwstawne (GAN), transformery, przepływy normalizacyjne, modele oparte na energii i dyfuzyjne modele odszumiające. Książka zaczyna się od podstaw głębokiego uczenia i prowadzi do nowatorskich architektur. Dzięki wskazówkom i sztuczkom zrozumiesz, jak sprawić, aby nasze modele uczyły się bardziej skutecznie i stawały się bardziej kreatywne. - Dowiedz się, jak VAE pozwala zmienić wyraz twarzy na zdjęciu. - Naucz GAN generowania obrazów na podstawie własnego zbioru danych. - Zbuduj modele dyfuzyjne do tworzenia nowych odmian kwiatów. - Wyszkol swój własny GPT, aby generował tekst. - Dowiedz się jak są szkolone duże modele językowe jak ChatGPT. - Przeanalizuj najnowocześniejsze architektury jak StyleGAN2 i ViT-VQGAN - Skomponuj muzykę polifoniczną wykorzystując transformery i MuseGAN - Zrozum jak generatywne modele świata mogą rozwiązać zadania uczenia przez wzmacnianie. - Zanurz się w multimodalnych modelach jak DALL.E 2, Imagen i Stable Diffusion Książka ta analizuje także przyszłą generacyjną sztuczną inteligencję i sposób, w jaki ludzie i firmy mogą proaktywnie zacząć wykorzystywać tę niezwykłą nową technikę, aby zyskiwać przewagę konkurencyjną. "Generatywne głębokie uczenie to dostępne wprowadzenie do narzędzi głębokiego uczenia dla celów modelowania generatywnego. Jeśli jesteście kreatywnymi praktykami, kochającymi bawić się kodem i chcecie zastosować głębokie uczenie w swojej pracy, ta książka jest dla was." -David Ha Szef strategii, Stability AT "Doskonała książka, która zagłębia się wprost w podstawowe technik stanowiące aktualną wiedzę o generacyjnym głębokim nauczaniu. Jest to ekscytująca analiza jednej z najbardziej fascynujących dziedzin w ramach sztucznej inteligencji!" -Francois Chollet Twórca Keras