Author: Mateusz Zimoch
1
Videocourse

OpenCV i Python. Kurs video. Przetwarzanie obrazów z zastosowaniem sieci neuronowych

Mateusz Zimoch

Obierz kurs na przetwarzanie obrazów w Pythonie Przetwarzanie obrazów to dynamicznie rozwijająca się dziedzina, która znajduje zastosowanie w licznych branżach, takich jak medycyna, motoryzacja, przemysł rozrywkowy, bezpieczeństwo, rolnictwo czy marketing. Umożliwia automatyczne rozpoznawanie obiektów, analizę obrazów medycznych i tworzenie interaktywnych aplikacji korzystających ze sztucznej inteligencji. Warto się zagłębić w techniki przetwarzania obrazów, które stały się dostępniejsze i skuteczniejsze niż kiedykolwiek wcześniej dzięki lepszemu wykorzystaniu mocy obliczeniowej niezbędnej do procesowania sieci konwolucyjnych (CNN) i algorytmów YOLO. Ponadto modele generatywne, jak DALL-E czy Midjourney, oferują możliwości generowania obrazów na potrzeby trenowania modeli AI, co pozwala zwiększać różnorodność i wielkość puli danych (ang. data augmentation). Powszechnym narzędziem w segmencie computer vision jest biblioteka OpenCV. Jest używana do analizy obrazów, rozpoznawania obiektów, detekcji twarzy, wykrywania ruchu czy segmentacji obrazów. OpenCV oferuje dostęp do szerokiego zakresu narzędzi i algorytmów, a dobre opanowanie biblioteki otwiera drzwi do ciekawych projektów związanych z widzeniem komputerowym. Umiejętność przetwarzania obrazów jest niezwykle ceniona na rynku pracy - specjaliści mogą liczyć na atrakcyjne stanowiska i różnorodne wyzwania technologiczne. Co Cię czeka podczas naszego profesjonalnego szkolenia Podczas kursu: Zrozumiesz, czym jest przetwarzanie obrazów i jakie ma zastosowania Zainstalujesz i skonfigurujesz bibliotekę OpenCV w Pythonie Skonfigurujesz środowisko Jupyter Notebook i Google Colaboratory Zapoznasz się z klasycznym podejściem w przetwarzaniu obrazów na podstawie zadania z wykrywaniem obiektów na obrazie Zrozumiesz podstawy działania w pełni połączonych sieci neuronowych Wprowadzisz się do sieci konwolucyjnych (CNN) i ich zastosowania w przetwarzaniu obrazów Zbudujesz proste modele CNN od podstaw przy użyciu biblioteki Tensorflow (moduł Keras) w Pythonie Zapobiegniesz przeuczeniu sieci neuronowych Wykorzystasz gotowe architektury sieci neuronowych Zastosujesz techniki przetwarzania obrazów i CNN do detekcji i rozpoznawania obiektów na obrazach Poznasz algorytm YOLO Wykorzystasz techniki wzbogacania danych obrazowych (obracanie, przesuwanie, zmiana jasności, zoomowanie, odwracanie lustrzane itp.) Zrozumiesz koncepcję transfer learningu i jego zalety Skorzystasz z gotowych modeli do rozwiązania nowych problemów przetwarzania obrazów za pomocą transfer learningu Szkolenie OpenCV i Python. Kurs video. Przetwarzanie obrazów z zastosowaniem sieci neuronowych otworzy przed Tobą praktyczne zastosowania przetwarzania obrazów. To unikalna okazja do zrozumienia, jak ewoluowały techniki przetwarzania obrazów i jakie korzyści niosą za sobą najnowsze technologie. Na początek nauczysz się obsługi narzędzi, w tym instalacji i konfiguracji OpenCV, a także środowisk Jupyter Notebook i Google Colaboratory. Następnie poznasz klasyczne metody przetwarzania obrazów, w tym filtrację i detekcję krawędzi, i zapoznasz się z nowoczesnymi podejściami opartymi na sieciach konwolucyjnych (CNN). Zbudujesz proste modele CNN - od podstaw, nauczysz się także zapobiegać ich przeuczeniu i używać gotowych architektur sieci neuronowych. Zapoznasz się z technikami wzbogacania danych obrazowych i koncepcją transfer learningu, aby jeszcze efektywniej trenować modele. Na koniec nabędziesz umiejętności stosowania technik przetwarzania obrazów do detekcji i rozpoznawania obiektów na obrazach za pomocą algorytmu YOLO. Kurs ukończysz na poziomie średnio zaawansowanym i będziesz w stanie samodzielnie napisać konwolucyjną sieć neuronową z Tensorflow do wybranego zadania przetwarzania obrazu lub użyć gotowej architektury opartej na transfer learningu. Systematyczność i ciężka praca to droga do sukcesu. Nikt nie urodził się wszechwiedzący. Jeśli będziesz poświęcać godzinę dziennie na naukę i samorozwój, prędzej czy później osiągniesz zamierzony cel.  

2
Videocourse

OpenCV. Kurs video. Przetwarzanie obrazów w języku Python

Mateusz Zimoch

Wybierz kurs OpenCV online Ludzkie oko jest doskonałe. Przez narząd wzroku codziennie odbieramy multum bodźców z otoczenia. Nasz mózg ma nie lada zadanie – zinterpretować to, co widzimy. To właśnie rozpoznanie i klasyfikacja obrazu mają kluczowy wpływ na rozumienie czerpanych ze świata informacji. A jak widzi komputer? Naukowcy zwykli podglądać i naśladować mechanizmy zachodzące w przyrodzie. Tak oto nasza percepcja wzrokowa stała się pierwowzorem dla wizji komputerowej (computer vision). Ta rewolucyjna dziedzina informatyki jest poświęcona rozumieniu informacji wizualnych przez maszynę. Pomimo że proste algorytmy przetwarzania obrazów towarzyszą ludzkości od 60 lat, rozwój widzenia komputerowego jest wykładniczy. Dotyczy w szczególności ostatniej dekady. Przełom ten jest związany z coraz większą mocą obliczeniową współczesnych komputerów i kart graficznych. Dzięki zrównoleglaniu złożonych obliczeń postęp technologiczny zrewolucjonizował także uczenie maszynowe i uczenie głębokie. Niegdyś niemożliwe trenowanie sieci neuronowych na podstawie dużej ilości danych wejściowych jest dziś typowym zadaniem. Kamery rejestrujące ruch, autonomiczne samochody, biometria i rozpoznawanie twarzy to już nie science fiction – to część naszej rzeczywistości! A więc dowiedz się, jak... widzą maszyny, i nie daj się prześcignąć współczesności! Poznaj OpenCV - największą wieloplatformową bibliotekę do przetwarzania obrazów i video. Znajdziesz tu wiele wbudowanych funkcji i algorytmów do analizy ruchu, detekcji obiektów i rozpoznawania gestów. OpenCV przystosowane jest do analizy w czasie rzeczywistym. Z powodzeniem obsługuje głębokie sieci neuronowe, a nawet generatywne sieci współzawodniczące GAN. By nauka była jeszcze przyjemniejsza, wszystkie przykłady zaimplementowano w Pythonie. Według rankingów popularności to najpowszechniej używany język programowania. Mało tego - jest także technologią numer jeden stosowaną przez inżynierów machine learning i data science. Co Cię czeka w trakcie kursu OpenCV online? Podczas pracy z kursem video OpenCV poznasz takie zagadnienia jak: Podstawy Pythona, Jupyter Notebooka, Google Colabolatory Biblioteka OpenCV Obsługa obrazów (ładowanie, wyświetlanie, zapisywanie) Obsługa video i streamów Rysowanie elementów na obrazie (linie, tekst, polilinie) Transformacje obrazu (skalowanie, rotacja, translacja) Transformacje afiniczna i perspektywiczna Progowanie - różne rodzaje Wyrównanie histogramu, CLAHE Rozmycie i wykrywanie krawędzi Operator Sobela i Canny’ego Wykrywanie konturów Transformata Hougha Operacje morfologiczne Użycie klasyfikatora Haara i klasyfikatora HOG Trenowanie własnego klasyfikatora HOG Nakładanie obrazów OCR - optyczne rozpoznawanie znaków Przetwarzanie wzorców Pisanie i zastosowanie sieci neuronowej i konwolucyjnej Zastosowanie gotowych wag i konfiguracji sieci neuronowych Algorytm YOLO Co więcej... Nauczysz się trenować własny klasyfikator do detekcji marek samochodów W projekcie praktycznym dowiesz się, jak wyodrębnić tekst z obrazów - przed Tobą analiza i wykrywanie cyfr z karty kredytowej! OpenCV. Kurs video. Przetwarzanie obrazów w języku Python wprowadzi Cię w praktyczne zagadnienia wizji komputerowej. Od podstaw poznasz bibliotekę OpenCV - od najprostszych instrukcji aż po zakres średnio zaawansowany. Nauczysz się rysować obiekty, wykrywać krawędzie i kontury, a także wykonywać transformacje obrazów (skalowanie, rotację, translację). Za pomocą klasyfikatora Haara przeprowadzisz detekcję twarzy. Następnie płynnie przejdziesz do trenowania własnych klasyfikatorów i pisania sieci konwolucyjnej. Dowiesz się, jak przetwarzać obraz i video z użyciem algorytmów uczenia maszynowego i sztucznej inteligencji. Po ukończeniu szkolenia będziesz w stanie samodzielnie dodać moduł logowania z rozpoznawaniem twarzy na swoją stronę internetową czy wdrożyć algorytm zliczający liczbę aut, które przejeżdżają po drodze. OpenCV. Kurs video. Przetwarzanie obrazów w języku Python jest właściwym przewodnikiem zarówno dla kogoś, kto jeszcze nie pracował z obrazami, jak i dla osoby średnio zaawansowanej - pozwoli uporządkować wiedzę i dokonać podsumowania podstawowych możliwości. Machine learning engineer Specyfika pracy machine learning engineera z nastawieniem na obraz polega na dużym zróżnicowaniu. Od inżyniera wizji komputerowej wymaga się zdolności analitycznego myślenia, rozwiązywania problemów matematycznych i znajomości bibliotek używanych do obróbki obrazu. Podstawowym zadaniem na tym stanowisku jest tworzenie algorytmów, które będą przetwarzać duże zbiory danych wizualnych. Przydatne są także umiejętności interpersonalne, gdyż często potrzebna jest konsultacja ze specjalistami innych dziedzin. Znane koncerny, jak również startupy chętnie wdrażają systemy wizyjne, by zautomatyzować złożone procesy. Ofert pracy stale przybywa, a wizja komputerowa to silnie rozwijająca się branża. Dziedziny, w których jej stosowanie stwarza nowe możliwości, to robotyka, medycyna, astronomia, radiologia, metrologia, sejsmologia, metalurgia i wiele innych. Systematyczność i ciężka praca to droga do sukcesu. Nikt nie urodził się wszechwiedzący. Jeśli będziesz poświęcać godzinę dziennie na naukę i samorozwój, prędzej czy później osiągniesz zamierzony cel. W naszej ofercie znajdziesz też kurs Adobe Photoshop dostępny w naszej ofercie.