Автор: Bahaaldine Azarmi
1
Eлектронна книга

Learning Kibana 5.0. Exploit the visualization capabilities of Kibana and build powerful interactive dashboards

Bahaaldine Azarmi

Kibana is an open source data visualization platform that allows you to interact with your data through stunning, powerful graphics. Its simple, browser-based interface enables you to quickly create and share dynamic dashboards that display changes to Elasticsearch queries in real time.In this book, you’ll learn how to use the Elastic stack on top of a data architecture to visualize data in real time. All data architectures have different requirements and expectations when it comes to visualizing the data, whether it’s logging analytics, metrics, business analytics, graph analytics, or scaling them as per your business requirements. This book will help you master Elastic visualization tools and adapt them to the requirements of your project. You will start by learning how to use the basic visualization features of Kibana 5. Then you will be shown how to implement a pure metric analytics architecture and visualize it using Timelion, a very recent and trendy feature of the Elastic stack. You will learn how to correlate data using the brand-new Graph visualization and build relationships between documents. Finally, you will be familiarized with the setup of a Kibana development environment so that you can build a custom Kibana plugin.By the end of this book you will have all the information needed to take your Elastic stack skills to a new level of data visualization.

2
Eлектронна книга

Machine Learning with the Elastic Stack. Expert techniques to integrate machine learning with distributed search and analytics

Rich Collier, Bahaaldine Azarmi

Machine Learning with the Elastic Stack is a comprehensive overview of the embedded commercial features of anomaly detection and forecasting. The book starts with installing and setting up Elastic Stack. You will perform time series analysis on varied kinds of data, such as log files, network flows, application metrics, and financial data.As you progress through the chapters, you will deploy machine learning within the Elastic Stack for logging, security, and metrics. In the concluding chapters, you will see how machine learning jobs can be automatically distributed and managed across the Elasticsearch cluster and made resilient to failure.By the end of this book, you will understand the performance aspects of incorporating machine learning within the Elastic ecosystem and create anomaly detection jobs and view results from Kibana directly.

3
Eлектронна книга

Machine Learning with the Elastic Stack. Gain valuable insights from your data with Elastic Stack's machine learning features - Second Edition

Rich Collier, Camilla Montonen, Bahaaldine Azarmi

Elastic Stack, previously known as the ELK stack, is a log analysis solution that helps users ingest, process, and analyze search data effectively. With the addition of machine learning, a key commercial feature, the Elastic Stack makes this process even more efficient. This updated second edition of Machine Learning with the Elastic Stack provides a comprehensive overview of Elastic Stack's machine learning features for both time series data analysis as well as for classification, regression, and outlier detection.The book starts by explaining machine learning concepts in an intuitive way. You'll then perform time series analysis on different types of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you'll deploy machine learning within Elastic Stack for logging, security, and metrics. Finally, you'll discover how data frame analysis opens up a whole new set of use cases that machine learning can help you with.By the end of this Elastic Stack book, you'll have hands-on machine learning and Elastic Stack experience, along with the knowledge you need to incorporate machine learning in your distributed search and data analysis platform.

4
Eлектронна книга

Vector Search for Practitioners with Elastic. A toolkit for building NLP solutions for search, observability, and security using vector search

Bahaaldine Azarmi, Jeff Vestal, Shay Banon

While natural language processing (NLP) is largely used in search use cases, this book aims to inspire you to start using vectors to overcome equally important domain challenges like observability and cybersecurity. The chapters focus mainly on integrating vector search with Elastic to enhance not only their search but also observability and cybersecurity capabilities.The book, which also features a foreword written by the founder of Elastic, begins by teaching you about NLP and the functionality of Elastic in NLP processes. Here you’ll delve into resource requirements and find out how vectors are stored in the dense-vector type along with specific page cache requirements for fast response times. As you advance, you’ll discover various tuning techniques and strategies to improve machine learning model deployment, including node scaling, configuration tuning, and load testing with Rally and Python. You’ll also cover techniques for vector search with images, fine-tuning models for improved performance, and the use of clip models for image similarity search in Elasticsearch. Finally, you’ll explore retrieval-augmented generation (RAG) and learn to integrate ChatGPT with Elasticsearch to leverage vectorized data, ELSER's capabilities, and RRF's refined search mechanism.By the end of this NLP book, you’ll have all the necessary skills needed to implement and optimize vector search in your projects with Elastic.