Autor: Shay Banon
1
E-book

Elastic Stack 8.x Cookbook. Over 80 recipes to perform ingestion, search, visualization, and monitoring for actionable insights

Huage Chen, Yazid Akadiri, Shay Banon

Learn how to make the most of the Elastic Stack (ELK Stack) products—including Elasticsearch, Kibana, Elastic Agent, and Logstash—to take data reliably and securely from any source, in any format, and then search, analyze, and visualize it in real-time. This cookbook takes a practical approach to unlocking the full potential of Elastic Stack through detailed recipes step by step.Starting with installing and ingesting data using Elastic Agent and Beats, this book guides you through data transformation and enrichment with various Elastic components and explores the latest advancements in search applications, including semantic search and Generative AI. You'll then visualize and explore your data and create dashboards using Kibana. As you progress, you'll advance your skills with machine learning for data science, get to grips with natural language processing, and discover the power of vector search. The book covers Elastic Observability use cases for log, infrastructure, and synthetics monitoring, along with essential strategies for securing the Elastic Stack. Finally, you'll gain expertise in Elastic Stack operations to effectively monitor and manage your system.

2
E-book

Getting Started with Elastic Stack 8.0. Run powerful and scalable data platforms to search, observe, and secure your organization

Asjad Athick, Shay Banon

The Elastic Stack helps you work with massive volumes of data to power use cases in the search, observability, and security solution areas.This three-part book starts with an introduction to the Elastic Stack with high-level commentary on the solutions the stack can be leveraged for. The second section focuses on each core component, giving you a detailed understanding of the component and the role it plays. You’ll start by working with Elasticsearch to ingest, search, analyze, and store data for your use cases. Next, you’ll look at Logstash, Beats, and Elastic Agent as components that can collect, transform, and load data. Later chapters help you use Kibana as an interface to consume Elastic solutions and interact with data on Elasticsearch. The last section explores the three main use cases offered on top of the Elastic Stack. You’ll start with a full-text search and look at real-world outcomes powered by search capabilities. Furthermore, you’ll learn how the stack can be used to monitor and observe large and complex IT environments. Finally, you’ll understand how to detect, prevent, and respond to security threats across your environment. The book ends by highlighting architecture best practices for successful Elastic Stack deployments.By the end of this book, you’ll be able to implement the Elastic Stack and derive value from it.

3
E-book

Vector Search for Practitioners with Elastic. A toolkit for building NLP solutions for search, observability, and security using vector search

Bahaaldine Azarmi, Jeff Vestal, Shay Banon

While natural language processing (NLP) is largely used in search use cases, this book aims to inspire you to start using vectors to overcome equally important domain challenges like observability and cybersecurity. The chapters focus mainly on integrating vector search with Elastic to enhance not only their search but also observability and cybersecurity capabilities.The book, which also features a foreword written by the founder of Elastic, begins by teaching you about NLP and the functionality of Elastic in NLP processes. Here you’ll delve into resource requirements and find out how vectors are stored in the dense-vector type along with specific page cache requirements for fast response times. As you advance, you’ll discover various tuning techniques and strategies to improve machine learning model deployment, including node scaling, configuration tuning, and load testing with Rally and Python. You’ll also cover techniques for vector search with images, fine-tuning models for improved performance, and the use of clip models for image similarity search in Elasticsearch. Finally, you’ll explore retrieval-augmented generation (RAG) and learn to integrate ChatGPT with Elasticsearch to leverage vectorized data, ELSER's capabilities, and RRF's refined search mechanism.By the end of this NLP book, you’ll have all the necessary skills needed to implement and optimize vector search in your projects with Elastic.