Autor: Adi Polak
1
E-book

Machine Learning Engineering with Python. Manage the lifecycle of machine learning models using MLOps with practical examples - Second Edition

Andrew P. McMahon, Adi Polak

The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field.The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized model factory for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift.Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques.With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning.

2
E-book

Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch

Adi Polak

Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania ― nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu. Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow. Z kolejnych rozdziałów dowiesz się, jak od strony technicznej wygląda korzystanie z platformy uczenia maszynowego. W książce znajdziesz również opis wzorców wdrażania, wnioskowania i monitorowania modeli w środowisku produkcyjnym. Najciekawsze zagadnienia: cykl życia uczenia maszynowego i MLflow inżynieria cech i przetwarzanie wstępne za pomocą Sparka szkolenie modelu i budowa potoku budowa systemu danych z wykorzystaniem uczenia głębokiego praca TensorFlow w trybie rozproszonym skalowanie systemu i tworzenie jego wewnętrznej architektury Właśnie takiej książki społeczność Sparka wyczekuje od dekady! Andy Petrella, autor książki Fundamentals of Data Observability