Author: Aurélien Géron
1
Ebook

Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow

Aurélien Géron

Pojęcia, techniki i narzędzia służące do tworzenia systemów inteligentnych W ciągu ostatnich lat uczenie maszynowe stało się sercem wielu nowoczesnych produktów, takich jak zaawansowane techniki wyszukiwania w przeglądarkach, rozpoznawanie mowy w smartfonach czy proponowanie treści w zależności od indywidualnych preferencji użytkownika. Być może niedługo taki system inteligentny zastąpi Cię za kierownicą samochodu. Uczenie głębokie wprowadziło nową jakość do uczenia maszynowego. Daje niesamowite możliwości, jednak wymaga olbrzymiej mocy obliczeniowej i potężnych ilości danych. Programiści implementujący takie rozwiązania są poszukiwanymi specjalistami i mogą liczyć na ekscytujące oferty! Ta książka jest praktycznym podręcznikiem tworzenia systemów inteligentnych. Przedstawiono tu najważniejsze zagadnienia teoretyczne dotyczące uczenia maszynowego i sieci neuronowych. W zrozumiały sposób zaprezentowano koncepcje i narzędzia służące do tworzenia systemów inteligentnych. Opisano Scikit-Learn i TensorFlow - środowiska produkcyjne języka Python - i pokazano krok po kroku, w jaki sposób wykorzystuje się je do implementacji sieci neuronowych. Liczne praktyczne przykłady i ćwiczenia pozwolą na pogłębienie i utrwalenie zdobytej wiedzy. Jeśli tylko potrafisz posługiwać się Pythonem, dzięki tej przystępnie napisanej książce szybko zaczniesz implementować systemy inteligentne. W tej książce między innymi: podstawowe koncepcje uczenia maszynowego, uczenia głębokiego i sieci neuronowych przygotowywanie zbiorów danych i zarządzanie nimi algorytmy uczenia maszynowego rodzaje architektury sieci neuronowych uczenie głębokich sieci neuronowych olbrzymie zbiory danych i uczenie poprzez wzmacnianie Już dziś zacznij tworzyć systemy inteligentne!

2
Ebook

Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow. Wydanie II

Aurélien Géron

W 2006 roku świat nauki zafascynował się głębokimi sieciami neuronowymi. Wbrew wcześniejszym przekonaniom okazało się, że ich uczenie jest możliwe. Technika ta została nazwana uczeniem głębokim. Wymagała zapewnienia olbrzymiej mocy obliczeniowej i potężnych ilości danych, jednak potencjał wytrenowanych sieci głębokich był niesamowity. Kolejne lata przyniosły bujny rozwój tej technologii w wielu obszarach, co pozwoliło na tworzenie przeróżnych zaawansowanych produktów. Prace nad nowymi zastosowaniami sieci głębokich trwają. Wszystko wskazuje na to, że już wkrótce zdominują one większość dziedzin naszego życia. To drugie wydanie bestsellerowego przewodnika po technikach uczenia maszynowego. Wystarczą minimalne umiejętności programistyczne, aby dzięki tej książce nauczyć się budowania i trenowania głębokiej sieci neuronowej. Zawarto tu minimum teorii, a proces nauki jest ułatwiony przez liczne przykłady i ćwiczenia. Wykorzystano gotowe rozwiązania i przedstawiono zasady pracy ze specjalistycznymi narzędziami, w tym z TensorFlow 2, najnowszą odsłoną modułu. W efekcie niepostrzeżenie przyswoisz niezbędny zasób pojęć i narzędzi służących do tworzenia systemów inteligentnych. Poznasz różnorodne techniki i zaczniesz samodzielnie ich używać. Po lekturze będziesz biegle posługiwać się najnowszymi technologiami sztucznej inteligencji! W tej książce między innymi: podstawy uczenia maszynowego i rozpoczęcie pracy z TensorFlow techniki wykrywania obiektów, segmentacji semantycznej i mechanizmy uwagi interfejs Keras, narzędzia TF Transform i TF Serving wdrażanie modeli TensorFlow techniki uczenia nienadzorowanego, wykrywanie anomalii oraz biblioteka TF Agents TensorFlow 2: źródło magii zaawansowanych technologii!

3
Ebook

Uczenie maszynowe z użyciem Scikit-Learn, Keras i TensorFlow. Wydanie III

Aurélien Géron

Pojęcia, techniki i narzędzia służące do tworzenia systemów inteligentnych Głębokie sieci neuronowe mają niesamowity potencjał. Osiągnięcia ostatnich lat nadały procesom uczenia głębokiego zupełnie nową jakość. Obecnie nawet programiści niezaznajomieni z tą technologią mogą korzystać z prostych i niezwykle skutecznych narzędzi, pozwalających na sprawne implementowanie programów uczących się z danych. Znajdziesz tu rozsądne, intuicyjne objaśnienia, a także mnóstwo praktycznych porad! Francois Chollet, twórca interfejsu Keras To trzecie wydanie bestsellerowego przewodnika po uczeniu maszynowym. Książka jest adresowana do osób, które chcą wejść w świat uczenia maszynowego ― przy czym wystarczą do tego minimalne umiejętności programistyczne. Zawarto tu minimum teorii, a proces nauki ułatwiają liczne przykłady i ćwiczenia. Dzięki temu przyswoisz niezbędne pojęcia i nauczysz się korzystać z gotowych platform produkcyjnych Pythona: Scikit-Learn, Keras i TensorFlow. W tym wydaniu pokazano różnorodne techniki, od prostej regresji liniowej aż po głębokie sieci neuronowe. Szybko nauczysz się tworzyć działające systemy inteligentne! W książce między innymi: korzystanie ze Scikit-Learn, z TensorFlow i Keras modele: maszyny wektorów nośnych, drzewa decyzyjne, lasy losowe i metody zespołowe uczenie nienadzorowane: redukcja wymiarowości, analiza skupień, wykrywanie anomalii sieci neuronowe: sieci splotowe, rekurencyjne, modele dyfuzyjne i transformatory trenowanie i implementacje sieci neuronowych To znakomite wprowadzenie do teoretycznych i praktycznych rozważań na temat rozwiązywania problemów za pomocą sieci neuronowych! Pete Warden, mobile lead projektu Tensor Flow Twórz i trenuj nowoczesne sieci neuronowe!