Author: Blaine Bateman
1
Ebook

The Pandas Workshop. A comprehensive guide to using Python for data analysis with real-world case studies

Blaine Bateman, Saikat Basak, Thomas V. Joseph, William So

The Pandas Workshop will teach you how to be more productive with data and generate real business insights to inform your decision-making. You will be guided through real-world data science problems and shown how to apply key techniques in the context of realistic examples and exercises. Engaging activities will then challenge you to apply your new skills in a way that prepares you for real data science projects.You’ll see how experienced data scientists tackle a wide range of problems using data analysis with pandas. Unlike other Python books, which focus on theory and spend too long on dry, technical explanations, this workshop is designed to quickly get you to write clean code and build your understanding through hands-on practice. As you work through this Python pandas book, you’ll tackle various real-world scenarios, such as using an air quality dataset to understand the pattern of nitrogen dioxide emissions in a city, as well as analyzing transportation data to improve bus transportation services.By the end of this data analytics book, you’ll have the knowledge, skills, and confidence you need to solve your own challenging data science problems with pandas.

2
Ebook

The Supervised Learning Workshop. Predict outcomes from data by building your own powerful predictive models with machine learning in Python - Second Edition

Blaine Bateman, Ashish Ranjan Jha, Benjamin Johnston, Ishita Mathur

Would you like to understand how and why machine learning techniques and data analytics are spearheading enterprises globally? From analyzing bioinformatics to predicting climate change, machine learning plays an increasingly pivotal role in our society.Although the real-world applications may seem complex, this book simplifies supervised learning for beginners with a step-by-step interactive approach. Working with real-time datasets, you’ll learn how supervised learning, when used with Python, can produce efficient predictive models.Starting with the fundamentals of supervised learning, you’ll quickly move to understand how to automate manual tasks and the process of assessing date using Jupyter and Python libraries like pandas. Next, you’ll use data exploration and visualization techniques to develop powerful supervised learning models, before understanding how to distinguish variables and represent their relationships using scatter plots, heatmaps, and box plots. After using regression and classification models on real-time datasets to predict future outcomes, you’ll grasp advanced ensemble techniques such as boosting and random forests. Finally, you’ll learn the importance of model evaluation in supervised learning and study metrics to evaluate regression and classification tasks.By the end of this book, you’ll have the skills you need to work on your real-life supervised learning Python projects.