Autor: Francesca Lazzeri
1
E-book

Dodaj mocy Power BI! Jak za pomocą kodu w Pythonie i R pobierać, przekształcać i wizualizować dane

Luca Zavarella, Francesca Lazzeri

Ważnym zadaniem inżynierów danych jest kreowanie modeli uczenia maszynowego. Używa się do tego narzędzi do analizy biznesowej, takich jak Power BI. Możliwości Power BI są imponujące, a można je dodatkowo rozbudować. Jedną z ciekawszych metod wzbogacania modelu danych i wizualizacji Power BI jest zastosowanie złożonych algorytmów zaimplementowanych w językach Python i R. W ten sposób można nie tylko tworzyć interesujące wizualizacje danych, ale także pozyskiwać dzięki nim kluczowe dla biznesu informacje. Dzięki tej książce dowiesz się, jak to zrobić. Zaczniesz od przygotowania środowiska Power BI do używania skryptów w Pythonie i R. Następnie będziesz importować dane z nieobsługiwanych obiektów i przekształcać je za pomocą wyrażeń regularnych i złożonych algorytmów. Nauczysz się wywoływać zewnętrzne interfejsy API i korzystać z zaawansowanych technik w celu przeprowadzenia dogłębnych analiz i wyodrębnienia cennych informacji za pomocą narzędzi statystyki i uczenia maszynowego, a także poprzez zastosowanie optymalizacji liniowej i innych algorytmów. Zapoznasz się również z głównymi cechami statystycznymi zestawów danych i z metodami tworzenia różnych wykresów ułatwiających zrozumienie relacji między zmiennymi. Najciekawsze zagadnienia: złożone przekształcanie danych w Power BI za pomocą skryptów Pythona i R anonimizacja i pseudonimizacja danych praca z dużymi zestawami danych wartości odstające i brakujące dla danych wielowymiarowych i szeregów czasowych tworzenie złożonych wizualizacji danych Wyzwól potężną moc Power BI!

2
E-book

Extending Power BI with Python and R. Ingest, transform, enrich, and visualize data using the power of analytical languages

Luca Zavarella, Francesca Lazzeri

Python and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical languages.You'll start by learning how to configure your Power BI environment to use your Python and R scripts. The book then explores data ingestion and data transformation extensions, and advances to focus on data augmentation and data visualization. You'll understand how to import data from external sources and transform them using complex algorithms. The book helps you implement personal data de-identification methods such as pseudonymization, anonymization, and masking in Power BI. You'll be able to call external APIs to enrich your data much more quickly using Python programming and R programming. Later, you'll learn advanced Python and R techniques to perform in-depth analysis and extract valuable information using statistics and machine learning. You'll also understand the main statistical features of datasets by plotting multiple visual graphs in the process of creating a machine learning model.By the end of this book, you’ll be able to enrich your Power BI data models and visualizations using complex algorithms in Python and R.