Autor: Joe Reis
1
Ebook

Data Modeling with Snowflake. A practical guide to accelerating Snowflake development using universal modeling techniques - Second Edition

Serge Gershkovich, Joe Reis

Struggling with rising Snowflake costs and constant tuning? Poorly aligned data models can lead to bloated expenses, inefficient queries, and time-consuming rework. Data Modeling with Snowflake helps you harness the Snowflake Data Cloud’s scalable, cloud-native architecture and expansive feature set to deliver data solutions faster than ever.This book introduces simple, practical data modeling frameworks that accelerate agile design and evolve alongside your projects from concept to code. Rooted in decades of proven database design principles, these frameworks are paired, for the first time, with Snowflake-native objects and real-world examples, offering a two-in-one crash course in theory and direct application.Through real-world examples designed to make learning easy, you’ll leverage Snowflake’s innovative features like Time Travel, Zero-Copy Cloning, and Change Data Capture (CDC) to create cost-efficient solutions. Whether you're just starting out or refining your architecture, this book will guide you in designing smarter, scaling faster, and cutting costs by aligning timeless modeling principles with the power of Snowflake.

2
Ebook

Inżynieria danych w praktyce. Kluczowe koncepcje i najlepsze technologie

Joe Reis, Matt Housley

Ze względu na gwałtowny rozwój inżynierii danych, jaki nastąpił w ciągu ostatniej dekady, wielu inżynierów oprogramowania, badaczy i analityków danych zaczęło odczuwać potrzebę kompleksowego spojrzenia na tę praktykę. Dzięki tej praktycznej książce zawierającej opis najlepszych technologii dostępnych w ramach frameworka cyklu życia inżynierii danych, dowiesz się, jak planować i budować systemy, które mają zaspokoić potrzeby Twojej organizacji i klientów. Autorzy, Joe Reis i Matt Housley, przeprowadzą Cię przez cykl życia inżynierii danych i pokażą, jak połączyć różne technologie chmurowe, aby spełnić potrzeby konsumentów danych w dolnej części strumienia przetwarzania. Dzięki lekturze tej książki dowiesz się, jak zastosować koncepcje generowania, pozyskiwania, orkiestracji, przekształcania, przechowywania i zarządzania danymi - kluczowe w każdym środowisku danych, niezależnie od wykorzystywanej technologii. Dzięki książce: Uzyskasz zwięzły przegląd całego środowiska inżynierii danych. Nauczysz się oceniać problemy inżynierii danych i stosować kompleksowe frameworki najlepszych praktyk. Dowiesz się jak przebić się przez szum marketingowy i wybrać odpowiednie technologie, architekturę danych i procesy? Nauczysz się wykorzystywać cykl życia inżynierii danych do zaprojektowania i zbudowania solidnej architektury. Poznasz mechanizmy zarządzania danymi i bezpieczeństwa w całym cyklu życia inżynierii danych. "Świat danych ewoluuje już od jakiegoś czasu. Najpierw byli projektanci. Następnie administratorzy baz danych. Potem CIO. Następnie architekci danych. Ta książka sygnalizuje kolejny krok w ewolucji i dojrzałości branży. Jest to lektura obowiązkowa dla każdego, kto uczciwie podchodzi do swojego zawodu i kariery". Bill Inmon, twórca hurtowni danych "Inżynieria danych w praktyce" to świetne wprowadzenie do branży przenoszenia, przetwarzania i obsługi danych. Gorąco polecam ją każdemu, kto chce być na bieżąco z inżynierią danych lub analizą oraz wszystkim osobom zajmującym się danymi, którzy chcą uzupełnić luki w swojej wiedzy". Jordan Tigani, założyciel i dyrektor generalny firmy MotherDuck oraz inżynier-założyciel i współtwórca firmy BigQuery