Autor: Leonid Kuligin
1
Ebook

Generative AI on Google Cloud with LangChain. Design scalable generative AI solutions with Python, LangChain, and Vertex AI on Google Cloud

Leonid Kuligin, Jorge Zaldívar, Maximilian Tschochohei, Harrison Chase

The rapid transformation and enterprise adoption of GenAI has created an urgent demand for developers to quickly build and deploy AI applications that deliver real value. Written by three distinguished Google AI engineers and LangChain contributors who have shaped Google Cloud’s integration with LangChain and implemented AI solutions for Fortune 500 companies, this book bridges the gap between concept and implementation, exploring LangChain and Google Cloud’s enterprise-ready tools for scalable AI solutions.You'll start by exploring the fundamentals of large language models (LLMs) and how LangChain simplifies the development of AI workflows by connecting LLMs with external data and services. This book guides you through using essential tools like the Gemini and PaLM 2 APIs, Vertex AI, and Vertex AI Search to create sophisticated, production-ready GenAI applications. You'll also overcome the context limitations of LLMs by mastering advanced techniques like Retrieval-Augmented Generation (RAG) and external memory layers.Through practical patterns and real-world examples, you’ll gain everything you need to harness Google Cloud’s AI ecosystem, reducing the time to market while ensuring enterprise scalability. You’ll have the expertise to build robust GenAI applications that can be tailored to solve real-world business challenges.

2
Ebook

Generative AI with LangChain. Build production-ready LLM applications and advanced agents using Python, LangChain, and LangGraph - Second Edition

Ben Auffarth, Leonid Kuligin

This second edition tackles the biggest challenge facing companies in AI today: moving from prototypes to production. Fully updated to reflect the latest developments in the LangChain ecosystem, it captures how modern AI systems are developed, deployed, and scaled in enterprise environments. This edition places a strong focus on multi-agent architectures, robust LangGraph workflows, and advanced retrieval-augmented generation (RAG) pipelines.You'll explore design patterns for building agentic systems, with practical implementations of multi-agent setups for complex tasks. The book guides you through reasoning techniques such as Tree-of -Thoughts, structured generation, and agent handoffs—complete with error handling examples. Expanded chapters on testing, evaluation, and deployment address the demands of modern LLM applications, showing you how to design secure, compliant AI systems with built-in safeguards and responsible development principles. This edition also expands RAG coverage with guidance on hybrid search, re-ranking, and fact-checking pipelines to enhance output accuracy.Whether you're extending existing workflows or architecting multi-agent systems from scratch, this book provides the technical depth and practical instruction needed to design LLM applications ready for success in production environments.