Author: Matija Lah
1
Ebook

ETL with Azure Cookbook. Practical recipes for building modern ETL solutions to load and transform data from any source

Christian Cote, Matija Lah, Madina Saitakhmetova

ETL is one of the most common and tedious procedures for moving and processing data from one database to another. With the help of this book, you will be able to speed up the process by designing effective ETL solutions using the Azure services available for handling and transforming any data to suit your requirements.With this cookbook, you’ll become well versed in all the features of SQL Server Integration Services (SSIS) to perform data migration and ETL tasks that integrate with Azure. You’ll learn how to transform data in Azure and understand how legacy systems perform ETL on-premises using SSIS. Later chapters will get you up to speed with connecting and retrieving data from SQL Server 2019 Big Data Clusters, and even show you how to extend and customize the SSIS toolbox using custom-developed tasks and transforms. This ETL book also contains practical recipes for moving and transforming data with Azure services, such as Data Factory and Azure Databricks, and lets you explore various options for migrating SSIS packages to Azure. Toward the end, you’ll find out how to profile data in the cloud and automate service creation with Business Intelligence Markup Language (BIML).By the end of this book, you’ll have developed the skills you need to create and automate ETL solutions on-premises as well as in Azure.

2
Ebook

Mastering SQL Server 2017. Build smart and efficient database applications for your organization with SQL Server 2017

Milo?° Radivojevifá, Dejan Sarka, William Durkin, Christian Cote, ...

Microsoft SQL Server 2017 uses the power of R and Python for machine learning and containerization-based deployment on Windows and Linux. By learning how to use the features of SQL Server 2017 effectively, you can build scalable apps and easily perform data integration and transformation. You’ll start by brushing up on the features of SQL Server 2017. This Learning Path will then demonstrate how you can use Query Store, columnstore indexes, and In-Memory OLTP in your apps. You'll also learn to integrate Python code in SQL Server and graph database implementations for development and testing. Next, you'll get up to speed with designing and building SQL Server Integration Services (SSIS) data warehouse packages using SQL server data tools. Toward the concluding chapters, you’ll discover how to develop SSIS packages designed to maintain a data warehouse using the data flow and other control flow tasks.By the end of this Learning Path, you'll be equipped with the skills you need to design efficient, high-performance database applications with confidence.This Learning Path includes content from the following Packt books: SQL Server 2017 Developer's Guide by Miloš Radivojevi?, Dejan Sarka, et. al SQL Server 2017 Integration Services Cookbook by Christian Cote, Dejan Sarka, et. al

3
Ebook

SQL Server 2017 Integration Services Cookbook. Powerful ETL techniques to load and transform data from almost any source

Christian Cote, Dejan Sarka, David Peter Hansen, Matija Lah, ...

SQL Server Integration Services is a tool that facilitates data extraction, consolidation, and loading options (ETL), SQL Server coding enhancements, data warehousing, and customizations. With the help of the recipes in this book, you’ll gain complete hands-on experience of SSIS 2017 as well as the 2016 new features, design and development improvements including SCD, Tuning, and Customizations.At the start, you’ll learn to install and set up SSIS as well other SQL Server resources to make optimal use of this Business Intelligence tools. We’ll begin by taking you through the new features in SSIS 2016/2017 and implementing the necessary features to get a modern scalable ETL solution that fits the modern data warehouse. Through the course of chapters, you will learn how to design and build SSIS data warehouses packages using SQL Server Data Tools. Additionally, you’ll learn to develop SSIS packages designed to maintain a data warehouse using the Data Flow and other control flow tasks. You’ll also be demonstrated many recipes on cleansing data and how to get the end result after applying different transformations. Some real-world scenarios that you might face are also covered and how to handle various issues that you might face when designing your packages.At the end of this book, you’ll get to know all the key concepts to perform data integration and transformation. You’ll have explored on-premises Big Data integration processes to create a classic data warehouse, and will know how to extend the toolbox with custom tasks and transforms.