Categories
Ebooks
-
Business and economy
- Bitcoin
- Businesswoman
- Coaching
- Controlling
- E-business
- Economy
- Finances
- Stocks and investments
- Personal competence
- Computer in the office
- Communication and negotiation
- Small company
- Marketing
- Motivation
- Multimedia trainings
- Real estate
- Persuasion and NLP
- Taxes
- Social policy
- Guides
- Presentations
- Leadership
- Public Relation
- Reports, analyses
- Secret
- Social Media
- Sales
- Start-up
- Your career
- Management
- Project management
- Human Resources
-
For children
-
For youth
-
Education
-
Encyclopedias, dictionaries
-
E-press
- Architektura i wnętrza
- Biznes i Ekonomia
- Home and garden
- E-business
- Finances
- Personal finance
- Business
- Photography
- Computer science
- HR & Payroll
- Computers, Excel
- Accounts
- Culture and literature
- Scientific and academic
- Environmental protection
- Opinion-forming
- Education
- Taxes
- Travelling
- Psychology
- Religion
- Agriculture
- Book and press market
- Transport and Spedition
- Healthand beauty
-
History
-
Computer science
- Office applications
- Data bases
- Bioinformatics
- IT business
- CAD/CAM
- Digital Lifestyle
- DTP
- Electronics
- Digital photography
- Computer graphics
- Games
- Hacking
- Hardware
- IT w ekonomii
- Scientific software package
- School textbooks
- Computer basics
- Programming
- Mobile programming
- Internet servers
- Computer networks
- Start-up
- Operational systems
- Artificial intelligence
- Technology for children
- Webmastering
-
Other
-
Foreign languages
-
Culture and art
-
School reading books
-
Literature
- Antology
- Ballade
- Biographies and autobiographies
- For adults
- Dramas
- Diaries, memoirs, letters
- Epic, epopee
- Essay
- Fantasy and science fiction
- Feuilletons
- Work of fiction
- Humour and satire
- Other
- Classical
- Crime fiction
- Non-fiction
- Fiction
- Mity i legendy
- Nobelists
- Novellas
- Moral
- Okultyzm i magia
- Short stories
- Memoirs
- Travelling
- Narrative poetry
- Poetry
- Politics
- Popular science
- Novel
- Historical novel
- Prose
- Adventure
- Journalism, publicism
- Reportage novels
- Romans i literatura obyczajowa
- Sensational
- Thriller, Horror
- Interviews and memoirs
-
Natural sciences
-
Social sciences
-
School textbooks
-
Popular science and academic
- Archeology
- Bibliotekoznawstwo
- Cinema studies
- Philology
- Polish philology
- Philosophy
- Finanse i bankowość
- Geography
- Economy
- Trade. World economy
- History and archeology
- History of art and architecture
- Cultural studies
- Linguistics
- Literary studies
- Logistics
- Maths
- Medicine
- Humanities
- Pedagogy
- Educational aids
- Popular science
- Other
- Psychology
- Sociology
- Theatre studies
- Theology
- Economic theories and teachings
- Transport i spedycja
- Physical education
- Zarządzanie i marketing
-
Guides
-
Game guides
-
Professional and specialist guides
-
Law
- Health and Safety
- History
- Road Code. Driving license
- Law studies
- Healthcare
- General. Compendium of knowledge
- Academic textbooks
- Other
- Construction and local law
- Civil law
- Financial law
- Economic law
- Economic and trade law
- Criminal law
- Criminal law. Criminal offenses. Criminology
- International law
- International law
- Health care law
- Educational law
- Tax law
- Labor and social security law
- Public, constitutional and administrative law
- Family and Guardianship Code
- agricultural law
- Social law, labour law
- European Union law
- Industry
- Agricultural and environmental
- Dictionaries and encyclopedia
- Public procurement
- Management
-
Tourist guides and travel
- Africa
- Albums
- Southern America
- North and Central America
- Australia, New Zealand, Oceania
- Austria
- Asia
- Balkans
- Middle East
- Bulgary
- China
- Croatia
- The Czech Republic
- Denmark
- Egipt
- Estonia
- Europe
- France
- Mountains
- Greece
- Spain
- Holand
- Iceland
- Lithuania
- Latvia
- Mapy, Plany miast, Atlasy
- Mini travel guides
- Germany
- Norway
- Active travelling
- Poland
- Portugal
- Other
- Russia
- Romania
- Slovakia
- Slovenia
- Switzerland
- Sweden
- World
- Turkey
- Ukraine
- Hungary
- Great Britain
- Italy
-
Psychology
- Philosophy of life
- Kompetencje psychospołeczne
- Interpersonal communication
- Mindfulness
- General
- Persuasion and NLP
- Academic psychology
- Psychology of soul and mind
- Work psychology
- Relacje i związki
- Parenting and children psychology
- Problem solving
- Intellectual growth
- Secret
- Sexapeal
- Seduction
- Appearance and image
- Philosophy of life
-
Religion
-
Sport, fitness, diets
-
Technology and mechanics
Audiobooks
-
Business and economy
- Bitcoin
- Businesswoman
- Coaching
- Controlling
- E-business
- Economy
- Finances
- Stocks and investments
- Personal competence
- Communication and negotiation
- Small company
- Marketing
- Motivation
- Real estate
- Persuasion and NLP
- Taxes
- Guides
- Presentations
- Leadership
- Public Relation
- Secret
- Social Media
- Sales
- Start-up
- Your career
- Management
- Project management
- Human Resources
-
For children
-
For youth
-
Education
-
Encyclopedias, dictionaries
-
History
-
Computer science
-
Other
-
Foreign languages
-
Culture and art
-
School reading books
-
Literature
- Antology
- Ballade
- Biographies and autobiographies
- For adults
- Dramas
- Diaries, memoirs, letters
- Epic, epopee
- Essay
- Fantasy and science fiction
- Feuilletons
- Work of fiction
- Humour and satire
- Other
- Classical
- Crime fiction
- Non-fiction
- Fiction
- Mity i legendy
- Nobelists
- Novellas
- Moral
- Okultyzm i magia
- Short stories
- Memoirs
- Travelling
- Poetry
- Politics
- Popular science
- Novel
- Historical novel
- Prose
- Adventure
- Journalism, publicism
- Reportage novels
- Romans i literatura obyczajowa
- Sensational
- Thriller, Horror
- Interviews and memoirs
-
Natural sciences
-
Social sciences
-
Popular science and academic
-
Guides
-
Professional and specialist guides
-
Law
-
Tourist guides and travel
-
Psychology
- Philosophy of life
- Interpersonal communication
- Mindfulness
- General
- Persuasion and NLP
- Academic psychology
- Psychology of soul and mind
- Work psychology
- Relacje i związki
- Parenting and children psychology
- Problem solving
- Intellectual growth
- Secret
- Sexapeal
- Seduction
- Appearance and image
- Philosophy of life
-
Religion
-
Sport, fitness, diets
-
Technology and mechanics
Videocourses
-
Data bases
-
Big Data
-
Biznes, ekonomia i marketing
-
Cybersecurity
-
Data Science
-
DevOps
-
For children
-
Electronics
-
Graphics/Video/CAX
-
Games
-
Microsoft Office
-
Development tools
-
Programming
-
Personal growth
-
Computer networks
-
Operational systems
-
Software testing
-
Mobile devices
-
UX/UI
-
Web development
-
Management
Podcasts
E-book details
Współczesne ogromne zbiory danych zawierają odpowiedzi na prawie każde pytanie. Równocześnie nauka o danych jest dziedziną, która cokolwiek onieśmiela. Znajduje się gdzieś pomiędzy subtelnymi umiejętnościami hakerskimi, twardą wiedzą z matematyki i statystyki a merytoryczną znajomością zagadnień z danej branży. Co więcej, dziedzina ta niezwykle dynamicznie się rozwija. Trud włożony w naukę o danych niewątpliwie się jednak opłaca: biegły analityk danych może liczyć na dobrze płatną, inspirującą i bardzo atrakcyjną pracę.
Dzięki tej książce opanujesz najważniejsze zagadnienia związane z matematyką i statystyką, będziesz także rozwijać umiejętności hakerskie. W ten sposób zyskasz podstawy pozwalające na rozpoczęcie przygody z analizą danych. Gruntownie zapoznasz się z potrzebnymi narzędziami i algorytmami. Pozwoli Ci to lepiej zrozumieć ich działanie. Poszczególne przykłady, którymi zilustrowano omawiane zagadnienia, są przejrzyste, dobrze opisane i zrozumiałe. Podczas lektury książki poznasz biblioteki, które umożliwią zaimplementowanie omówionych technik podczas analizy dużych zbiorów danych. Szybko się przekonasz, że aby zostać analitykiem danych, wystarczy odrobina ciekawości, sporo chęci, mnóstwo ciężkiej pracy i... ta książka.
Najważniejsze zagadnienia:
- Praktyczne wprowadzenie do Pythona
- Podstawy algebry liniowej, statystyki i rachunku prawdopodobieństwa w analizie danych
- Podstawy uczenia maszynowego
- Implementacje algorytmów modeli, w tym naiwny klasyfikator bayesowski, regresja liniowa, regresja logistyczna, drzewa decyzyjne, sieci neuronowe i grupowanie, MapReduce
- Systemy rekomendacji i mechanizmy przetwarzania języka naturalnego
- Korzystanie z mediów społecznościowych i baz danych.
Python. Wyciśniesz z danych każdą kroplę wiedzy!
- Przedmowa
- Data science
- Od podstaw
- Konwencje typograficzne przyjęte w tej książce
- Dodatkowe materiały do pobrania
- Podziękowania
- Rozdział 1. Wprowadzenie
- Znaczenie danych
- Czym jest analiza danych?
- Hipotetyczna motywacja
- Określanie najważniejszych węzłów
- Analitycy, których możesz znać
- Wynagrodzenie i doświadczenie
- Płatne konta
- Tematy interesujące użytkowników
- Co dalej?
- Rozdział 2. Błyskawiczny kurs Pythona
- Podstawy
- Skąd wziąć interpreter Pythona?
- Zasady tworzenia kodu Pythona
- Formatowanie za pomocą białych znaków
- Moduły
- Operacje arytmetyczne
- Polskie znaki diakrytyczne
- Funkcje
- Łańcuchy
- Wyjątki
- Listy
- Krotki
- Słowniki
- Zbiory
- Przepływ sterowania
- Wartości logiczne
- Bardziej skomplikowane zagadnienia
- Sortowanie
- Składanie list
- Generatory i iterator
- Losowość
- Wyrażenia regularne
- Programowanie obiektowe
- Narzędzia funkcyjne
- enumerate
- Funkcja zip i rozpakowywanie argumentów
- Argumenty nazwane i nienazwane
- Witaj w firmie DataSciencester!
- Dalsza eksploracja
- Podstawy
- Rozdział 3. Wizualizacja danych
- Pakiet matplotlib
- Wykres słupkowy
- Wykresy liniowe
- Wykresy punktowe
- Dalsza eksploracja
- Rozdział 4. Algebra liniowa
- Wektory
- Macierze
- Dalsza eksploracja
- Rozdział 5. Statystyka
- Opis pojedynczego zbioru danych
- Tendencje centralne
- Dyspersja
- Korelacja
- Paradoks Simpsona
- Inne pułapki związane z korelacją
- Korelacja i przyczynowość
- Dalsza eksploracja
- Opis pojedynczego zbioru danych
- Rozdział 6. Prawdopodobieństwo
- Zależność i niezależność
- Prawdopodobieństwo warunkowe
- Twierdzenie Bayesa
- Zmienne losowe
- Ciągły rozkład prawdopodobieństwa
- Rozkład normalny
- Centralne twierdzenie graniczne
- Dalsza eksploracja
- Rozdział 7. Hipotezy i wnioski
- Sprawdzanie hipotez
- Przykład: rzut monetą
- Przedziały ufności
- Hakowanie wartości p
- Przykład: przeprowadzanie testu A-B
- Wnioskowanie bayesowskie
- Dalsza eksploracja
- Rozdział 8. Metoda gradientu prostego
- Podstawy metody gradientu prostego
- Szacowanie gradientu
- Korzystanie z gradientu
- Dobór właściwego rozmiaru kroku
- Łączenie wszystkich elementów
- Stochastyczna metoda gradientu prostego
- Dalsza eksploracja
- Rozdział 9. Uzyskiwanie danych
- Strumienie stdin i stdout
- Wczytywanie plików
- Podstawowe zagadnienia dotyczące plików tekstowych
- Pliki zawierające dane rozdzielone separatorem
- Pobieranie danych ze stron internetowych
- HTML i parsowanie
- Przykład: książki wydawnictwa OReilly dotyczące analizy danych
- Korzystanie z interfejsów programistycznych
- Format JSON (i XML)
- Korzystanie z interfejsu programistycznego bez uwierzytelniania
- Poszukiwanie interfejsów programistycznych
- Przykład: korzystanie z interfejsów programistycznych serwisu Twitter
- Uzyskiwanie danych uwierzytelniających
- Dalsza eksploracja
- Rozdział 10. Praca z danymi
- Eksploracja danych
- Eksploracja danych jednowymiarowych
- Dwa wymiary
- Wiele wymiarów
- Oczyszczanie i wstępne przetwarzanie danych
- Przetwarzanie danych
- Przeskalowanie
- Redukcja liczby wymiarów
- Dalsza eksploracja
- Eksploracja danych
- Rozdział 11. Uczenie maszynowe
- Modelowanie
- Czym jest uczenie maszynowe?
- Nadmierne i zbyt małe dopasowanie
- Poprawność
- Kompromis pomiędzy wartością progową a wariancją
- Ekstrakcja i selekcja cech
- Dalsza eksploracja
- Rozdział 12. Algorytm k najbliższych sąsiadów
- Model
- Przykład: ulubione języki
- Przekleństwo wymiarowości
- Dalsza eksploracja
- Rozdział 13. Naiwny klasyfikator bayesowski
- Bardzo prosty filtr antyspamowy
- Bardziej zaawansowany filtr antyspamowy
- Implementacja
- Testowanie modelu
- Dalsza eksploracja
- Rozdział 14. Prosta regresja liniowa
- Model
- Korzystanie z algorytmu spadku gradientowego
- Szacowanie maksymalnego prawdopodobieństwa
- Dalsza eksploracja
- Rozdział 15. Regresja wieloraka
- Model
- Dalsze założenia dotyczące modelu najmniejszych kwadratów
- Dopasowywanie modelu
- Interpretacja modelu
- Poprawność dopasowania
- Dygresja: ładowanie wstępne
- Błędy standardowe współczynników regresji
- Regularyzacja
- Dalsza eksploracja
- Rozdział 16. Regresja logistyczna
- Problem
- Funkcja logistyczna
- Stosowanie modelu
- Poprawność dopasowania
- Maszyny wektorów nośnych
- Dalsza eksploracja
- Rozdział 17. Drzewa decyzyjne
- Czym jest drzewo decyzyjne?
- Entropia
- Entropia podziału
- Tworzenie drzewa decyzyjnego
- Łączenie wszystkiego w całość
- Lasy losowe
- Dalsza eksploracja
- Rozdział 18. Sztuczne sieci neuronowe
- Perceptrony
- Jednokierunkowe sieci neuronowe
- Propagacja wsteczna
- Przykład: pokonywanie zabezpieczenia CAPTCHA
- Dalsza eksploracja
- Rozdział 19. Grupowanie
- Idea
- Model
- Przykład: spotkania
- Wybór wartości parametru k
- Przykład: grupowanie kolorów
- Grupowanie hierarchiczne z podejściem aglomeracyjnym
- Dalsza eksploracja
- Rozdział 20. Przetwarzanie języka naturalnego
- Chmury wyrazowe
- Modele n-gram
- Gramatyka
- Na marginesie: próbkowanie Gibbsa
- Modelowanie tematu
- Dalsza eksploracja
- Rozdział 21. Analiza sieci społecznościowych
- Pośrednictwo
- Centralność wektorów własnych
- Mnożenie macierzy
- Centralność
- Grafy skierowane i metoda PageRank
- Dalsza eksploracja
- Rozdział 22. Systemy rekomendujące
- Ręczne rozwiązywanie problemu
- Rekomendowanie tego, co jest popularne
- Filtrowanie kolaboratywne oparte na użytkownikach
- Filtrowanie kolaboratywne oparte na zainteresowaniach
- Dalsza eksploracja
- Rozdział 23. Bazy danych i SQL
- Polecenia CREATE TABLE i INSERT
- Polecenie UPDATE
- Polecenie DELETE
- Polecenie SELECT
- Polecenie GROUP BY
- Polecenie ORDER BY
- Polecenie JOIN
- Zapytania składowe
- Indeksy
- Optymalizacja zapytań
- Bazy danych NoSQL
- Dalsza eksploracja
- Rozdział 24. Algorytm MapReduce
- Przykład: liczenie słów
- Dlaczego warto korzystać z algorytmu MapReduce?
- Algorytm MapReduce w ujęciu bardziej ogólnym
- Przykład: analiza treści statusów
- Przykład: mnożenie macierzy
- Dodatkowe informacje: zespalanie
- Dalsza eksploracja
- Rozdział 25. Praktyka czyni mistrza
- IPython
- Matematyka
- Korzystanie z gotowych rozwiązań
- NumPy
- pandas
- scikit-learn
- Wizualizacja
- R
- Szukanie danych
- Zabierz się za analizę
- Hacker News
- Wozy straży pożarnej
- Koszulki
- A Ty?
- O autorze
- Kolofon
- Title: Data science od podstaw. Analiza danych w Pythonie
- Author: Joel Grus
- Original title: Data Science from Scratch: First Principles with Python
- Translation: Konrad Matuk
- ISBN: 978-83-283-4603-1, 9788328346031
- Date of issue: 2018-10-11
- Format: Ebook
- Item ID: dascpo
- Publisher: Helion