Analiza danych

361
Ebook

Machine Learning for Developers. Uplift your regular applications with the power of statistics, analytics, and machine learning

Rodolfo Bonnin

Most of us have heard about the term Machine Learning, but surprisingly the question frequently asked by developers across the globe is, “How do I get started in Machine Learning?”. One reason could be attributed to the vastness of the subject area because people often get overwhelmed by the abstractness of ML and terms such as regression, supervised learning, probability density function, and so on. This book is a systematic guide teaching you how to implement various Machine Learning techniques and their day-to-day application and development. You will start with the very basics of data and mathematical models in easy-to-follow language that you are familiar with; you will feel at home while implementing the examples. The book will introduce you to various libraries and frameworks used in the world of Machine Learning, and then, without wasting any time, you will get to the point and implement Regression, Clustering, classification, Neural networks, and more with fun examples. As you get to grips with the techniques, you’ll learn to implement those concepts to solve real-world scenarios for ML applications such as image analysis, Natural Language processing, and anomaly detections of time series data. By the end of the book, you will have learned various ML techniques to develop more efficient and intelligent applications.

362
Ebook

Machine Learning for the Web. Gaining insight and intelligence from the internet with Python

Andrea Isoni

Python is a general purpose and also a comparatively easy to learn programming language. Hence it is the language of choice for data scientists to prototype, visualize, and run data analyses on small and medium-sized data sets. This is a unique book that helps bridge the gap between machine learning and web development. It focuses on the difficulties of implementing predictive analytics in web applications. We focus on the Python language, frameworks, tools, and libraries, showing you how to build a machine learning system. You will explore the core machine learning concepts and then develop and deploy the data into a web application using the Django framework. You will also learn to carry out web, document, and server mining tasks, and build recommendation engines. Later, you will explore Python’s impressive Django framework and will find out how to build a modern simple web app with machine learning features.

363
Ebook

Machine Learning in Microservices. Productionizing microservices architecture for machine learning solutions

Mohamed Abouahmed, Omar Ahmed

With the rising need for agile development and very short time-to-market system deployments, incorporating machine learning algorithms into decoupled fine-grained microservices systems provides the perfect technology mix for modern systems. Machine Learning in Microservices is your essential guide to staying ahead of the curve in this ever-evolving world of technology.The book starts by introducing you to the concept of machine learning microservices architecture (MSA) and comparing MSA with service-based and event-driven architectures, along with how to transition into MSA. Next, you’ll learn about the different approaches to building MSA and find out how to overcome common practical challenges faced in MSA design. As you advance, you’ll get to grips with machine learning (ML) concepts and see how they can help better design and run MSA systems. Finally, the book will take you through practical examples and open source applications that will help you build and run highly efficient, agile microservices systems.By the end of this microservices book, you’ll have a clear idea of different models of microservices architecture and machine learning and be able to combine both technologies to deliver a flexible and highly scalable enterprise system.

364
Ebook

Machine Learning Model Serving Patterns and Best Practices. A definitive guide to deploying, monitoring, and providing accessibility to ML models in production

Md Johirul Islam

Serving patterns enable data science and ML teams to bring their models to production. Most ML models are not deployed for consumers, so ML engineers need to know the critical steps for how to serve an ML model.This book will cover the whole process, from the basic concepts like stateful and stateless serving to the advantages and challenges of each. Batch, real-time, and continuous model serving techniques will also be covered in detail. Later chapters will give detailed examples of keyed prediction techniques and ensemble patterns. Valuable associated technologies like TensorFlow severing, BentoML, and RayServe will also be discussed, making sure that you have a good understanding of the most important methods and techniques in model serving. Later, you’ll cover topics such as monitoring and performance optimization, as well as strategies for managing model drift and handling updates and versioning. The book will provide practical guidance and best practices for ensuring that your model serving pipeline is robust, scalable, and reliable. Additionally, this book will explore the use of cloud-based platforms and services for model serving using AWS SageMaker with the help of detailed examples.By the end of this book, you'll be able to save and serve your model using state-of-the-art techniques.

365
Ebook

Machine Learning Quick Reference. Quick and essential machine learning hacks for training smart data models

Rahul Kumar

Machine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner.After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered.By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference.

366
Ebook

Machine Learning Techniques for Text. Apply modern techniques with Python for text processing, dimensionality reduction, classification, and evaluation

Nikos Tsourakis

With the ever-increasing demand for machine learning and programming professionals, it's prime time to invest in the field. This book will help you in this endeavor, focusing specifically on text data and human language by steering a middle path among the various textbooks that present complicated theoretical concepts or focus disproportionately on Python code.A good metaphor this work builds upon is the relationship between an experienced craftsperson and their trainee. Based on the current problem, the former picks a tool from the toolbox, explains its utility, and puts it into action. This approach will help you to identify at least one practical use for each method or technique presented. The content unfolds in ten chapters, each discussing one specific case study. For this reason, the book is solution-oriented. It's accompanied by Python code in the form of Jupyter notebooks to help you obtain hands-on experience. A recurring pattern in the chapters of this book is helping you get some intuition on the data and then implement and contrast various solutions.By the end of this book, you'll be able to understand and apply various techniques with Python for text preprocessing, text representation, dimensionality reduction, machine learning, language modeling, visualization, and evaluation.

367
Ebook

Machine Learning with Apache Spark Quick Start Guide. Uncover patterns, derive actionable insights, and learn from big data using MLlib

Jillur Quddus

Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently.But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it?The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data.

368
Ebook

Machine Learning with R Cookbook. Analyze data and build predictive models - Second Edition

AshishSingh Bhatia, Yu-Wei, Chiu (David Chiu)

Big data has become a popular buzzword across many industries. An increasing number of people have been exposed to the term and are looking at how to leverage big data in their own businesses, to improve sales and profitability. However, collecting, aggregating, and visualizing data is just one part of the equation. Being able to extract useful information from data is another task, and a much more challenging one. Machine Learning with R Cookbook, Second Edition uses a practical approach to teach you how to perform machine learning with R. Each chapter is divided into several simple recipes. Through the step-by-step instructions provided in each recipe, you will be able to construct a predictive model by using a variety of machine learning packages. In this book, you will first learn to set up the R environment and use simple R commands to explore data. The next topic covers how to perform statistical analysis with machine learning analysis and assess created models, covered in detail later on in the book. You'll also learn how to integrate R and Hadoop to create a big data analysis platform. The detailed illustrations provide all the information required to start applying machine learning to individual projects. With Machine Learning with R Cookbook, machine learning has never been easier.

369
Ebook

Machine Learning with R Quick Start Guide. A beginner's guide to implementing machine learning techniques from scratch using R 3.5

Iván Pastor Sanz

Machine Learning with R Quick Start Guide takes you on a data-driven journey that starts with the very basics of R and machine learning. It gradually builds upon core concepts so you can handle the varied complexities of data and understand each stage of the machine learning pipeline.From data collection to implementing Natural Language Processing (NLP), this book covers it all. You will implement key machine learning algorithms to understand how they are used to build smart models. You will cover tasks such as clustering, logistic regressions, random forests, support vector machines, and more. Furthermore, you will also look at more advanced aspects such as training neural networks and topic modeling.By the end of the book, you will be able to apply the concepts of machine learning, deal with data-related problems, and solve them using the powerful yet simple language that is R.

370
Ebook

Machine Learning with scikit-learn Quick Start Guide. Classification, regression, and clustering techniques in Python

Kevin Jolly

Scikit-learn is a robust machine learning library for the Python programming language. It provides a set of supervised and unsupervised learning algorithms. This book is the easiest way to learn how to deploy, optimize, and evaluate all of the important machine learning algorithms that scikit-learn provides.This book teaches you how to use scikit-learn for machine learning. You will start by setting up and configuring your machine learning environment with scikit-learn. To put scikit-learn to use, you will learn how to implement various supervised and unsupervised machine learning models. You will learn classification, regression, and clustering techniques to work with different types of datasets and train your models.Finally, you will learn about an effective pipeline to help you build a machine learning project from scratch. By the end of this book, you will be confident in building your own machine learning models for accurate predictions.

371
Ebook

Machine Learning with Spark. Develop intelligent, distributed machine learning systems - Second Edition

Rajdeep Dua, Manpreet Singh Ghotra

This book will teach you about popular machine learning algorithms and their implementation. You will learn how various machine learning concepts are implemented in the context of Spark ML. You will start by installing Spark in a single and multinode cluster. Next you'll see how to execute Scala and Python based programs for Spark ML. Then we will take a few datasets and go deeper into clustering, classification, and regression. Toward the end, we will also cover text processing using Spark ML.Once you have learned the concepts, they can be applied to implement algorithms in either green-field implementations or to migrate existing systems to this new platform. You can migrate from Mahout or Scikit to use Spark ML.By the end of this book, you will acquire the skills to leverage Spark's features to create your own scalable machine learning applications and power a modern data-driven business.

372
Ebook

Machine Learning with TensorFlow 1.x. Second generation machine learning with Google's brainchild - TensorFlow 1.x

Saif Ahmed, Quan Hua, Shams Ul Azeem

Google's TensorFlow is a game changer in the world of machine learning. It has made machine learning faster, simpler, and more accessible than ever before. This book will teach you how to easily get started with machine learning using the power of Python and TensorFlow 1.x. Firstly, you’ll cover the basic installation procedure and explore the capabilities of TensorFlow 1.x. This is followed by training and running the first classifier, and coverage of the unique features of the library including data ?ow graphs, training, and the visualization of performance with TensorBoard—all within an example-rich context using problems from multiple industries. You’ll be able to further explore text and image analysis, and be introduced to CNN models and their setup in TensorFlow 1.x. Next, you’ll implement a complete real-life production system from training to serving a deep learning model. As you advance you’ll learn about Amazon Web Services (AWS) and create a deep neural network to solve a video action recognition problem. Lastly, you’ll convert the Caffe model to TensorFlow and be introduced to the high-level TensorFlow library, TensorFlow-Slim.By the end of this book, you will be geared up to take on any challenges of implementing TensorFlow 1.x in your machine learning environment.

373
Ebook

Machine Learning with the Elastic Stack. Expert techniques to integrate machine learning with distributed search and analytics

Rich Collier, Bahaaldine Azarmi

Machine Learning with the Elastic Stack is a comprehensive overview of the embedded commercial features of anomaly detection and forecasting. The book starts with installing and setting up Elastic Stack. You will perform time series analysis on varied kinds of data, such as log files, network flows, application metrics, and financial data.As you progress through the chapters, you will deploy machine learning within the Elastic Stack for logging, security, and metrics. In the concluding chapters, you will see how machine learning jobs can be automatically distributed and managed across the Elasticsearch cluster and made resilient to failure.By the end of this book, you will understand the performance aspects of incorporating machine learning within the Elastic ecosystem and create anomaly detection jobs and view results from Kibana directly.

374
Ebook

Managing Data Integrity for Finance. Discover practical data quality management strategies for finance analysts and data professionals

Jane Sarah Lat

Data integrity management plays a critical role in the success and effectiveness of organizations trying to use financial and operational data to make business decisions. Unfortunately, there is a big gap between the analysis and management of finance data along with the proper implementation of complex data systems across various organizations.The first part of this book covers the important concepts for data quality and data integrity relevant to finance, data, and tech professionals. The second part then focuses on having you use several data tools and platforms to manage and resolve data integrity issues on financial data. The last part of this the book covers intermediate and advanced solutions, including managed cloud-based ledger databases, database locks, and artificial intelligence, to manage the integrity of financial data in systems and databases.After finishing this hands-on book, you will be able to solve various data integrity issues experienced by organizations globally.

375
Ebook

Managing Data Science. Effective strategies to manage data science projects and build a sustainable team

Kirill Dubovikov

Data science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis.

376
Ebook

Managing Microsoft Teams: MS-700 Exam Guide. Configure and manage Microsoft Teams workloads and achieve Microsoft 365 certification with ease

Peter Rising, Nate Chamberlain

Do you want to build and test your proficiency in the deployment, management, and monitoring of Microsoft Teams features within the Microsoft 365 platform? Managing Microsoft Teams: MS-700 Exam Guide will help you to effectively plan and implement Microsoft Teams using the Microsoft 365 Teams admin center and Windows PowerShell. You’ll also discover best practices for rolling out and managing MS services for Teams users within your Microsoft 365 tenant. The chapters are divided into three easy-to-follow parts: planning and design, feature policies and administration, and team management, while aligning with the official MS-700 exam objectives to help you prepare effectively for the exam.The book starts by taking you through planning and design, where you’ll learn how to plan migrations, make assessments for network readiness, and plan and implement governance tasks such as configuring guest access and monitoring usage. Later, you’ll understand feature administration, focusing on collaboration, meetings, live events, phone numbers, and the phone system, along with applicable policy configurations. Finally, the book shows you how to manage Teams and membership settings and create app policies.By the end of this book, you'll have learned everything you need to pass the MS-700 certification exam and have a handy reference guide for MS Teams.

377
Ebook

Marketing i analityka biznesowa dla początkujących. Poznaj najważniejsze narzędzia i wykorzystaj ich możliwości

Kinga Sroka

Witaj w świecie fascynujących danych! Biznes nie istnieje bez twardych danych, założeń, KPI i ich realizacji. Także ta jego część, która jest związana z promocją. Szczególnie online. Dziś nie można być marketerem z prawdziwego zdarzenia i nie znać chociażby narzędzi oferowanych przez Google ― Analytics, Tag Manager, Search Console i Trends. Te nazwy kojarzą Ci się z czymś niezrozumiałym albo budzą obawy? Nie martw się i sięgnij po tę książkę! Dowiesz się z niej, jak efektywnie korzystać z internetowych rozwiązań analitycznych. Ten poradnik stanowi świetne wprowadzenie do marketingu i analityki biznesowej online dla osób, które dopiero zapoznają się z tym tematem. To nie tylko przegląd narzędzi współczesnego analityka. Autorka opisuje również kompetencje, które będą potrzebne osobom z branży w najbliższej przyszłości, wskazuje miejsca, gdzie już można je zdobywać, wreszcie podpowiada, jakie umiejętności trzeba mieć, by otrzymać wymarzoną pracę w firmach zajmujących się danymi cyfrowymi.

378
Ebook

Master Your Data with Power Query in Excel and Power BI. Leveraging Power Query to Get & Transform Your Task Flow

MrExcel's Holy Macro! Books, Miguel Escobar, Ken Puls

This book equips you with the essential skills to master Power Query in Excel and Power BI. Starting with the basics, you'll learn query management, data types, and error handling, establishing a solid foundation. You'll explore techniques to move queries between Excel and Power BI, ensuring seamless workflow integration. As the guide progresses, you'll delve into data import methods from flat files, Excel, web-based, and relational sources, while performing key transformations like appending, combining, and reshaping data.Advanced topics such as conditional logic, Power Query values, and M Language fundamentals will enhance your ability to customize and optimize queries. The book also covers the creation of parameters and custom functions, alongside applying sophisticated date and time techniques.Finally, you'll learn to optimize query performance and automate data refreshes, ensuring your analysis remains current. By the end of this guide, you'll have the confidence and expertise to effectively transform and manage data using Power Query, significantly enhancing your data analysis capabilities in Excel and Power BI.

379
Ebook

Mastering Apache Solr 7.x. An expert guide to advancing, optimizing, and scaling your enterprise search

Sandeep Nair, Chintan Mehta, Dharmesh Vasoya

Apache Solr is the only standalone enterprise search server with a REST-like application interface. providing highly scalable, distributed search and index replication for many of the world's largest internet sites.To begin with, you would be introduced to how you perform full text search, multiple filter search, perform dynamic clustering and so on helping you to brush up the basics of Apache Solr. You will also explore the new features and advanced options released in Apache Solr 7.x which will get you numerous performance aspects and making data investigation simpler, easier and powerful. You will learn to build complex queries, extensive filters and how are they compiled in your system to bring relevance in your search tools. You will learn to carry out Solr scoring, elements affecting the document score and how you can optimize or tune the score for the application at hand. You will learn to extract features of documents, writing complex queries in re-ranking the documents. You will also learn advanced options helping you to know what content is indexed and how the extracted content is indexed. Throughout the book, you would go through complex problems with solutions along with varied approaches to tackle your business needs. By the end of this book, you will gain advanced proficiency to build out-of-box smart search solutions for your enterprise demands.

380
Ebook

Mastering Apache Spark 2.x. Advanced techniques in complex Big Data processing, streaming analytics and machine learning - Second Edition

Romeo Kienzler

Apache Spark is an in-memory, cluster-based Big Data processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and more. This book will take your knowledge of Apache Spark to the next level by teaching you how to expand Spark’s functionality and build your data flows and machine/deep learning programs on top of the platform.The book starts with a quick overview of the Apache Spark ecosystem, and introduces you to the new features and capabilities in Apache Spark 2.x. You will then work with the different modules in Apache Spark such as interactive querying with Spark SQL, using DataFrames and DataSets effectively, streaming analytics with Spark Streaming, and performing machine learning and deep learning on Spark using MLlib and external tools such as H20 and Deeplearning4j. The book also contains chapters on efficient graph processing, memory management and using Apache Spark on the cloud.By the end of this book, you will have all the necessary information to master Apache Spark, and use it efficiently for Big Data processing and analytics.

381
Ebook

Mastering Apache Storm. Real-time big data streaming using Kafka, Hbase and Redis

Ankit Jain

Apache Storm is a real-time Big Data processing framework that processes large amounts of data reliably, guaranteeing that every message will be processed. Storm allows you to scale your data as it grows, making it an excellent platform to solve your big data problems. This extensive guide will help you understand right from the basics to the advanced topics of Storm.The book begins with a detailed introduction to real-time processing and where Storm fits in to solve these problems. You’ll get an understanding of deploying Storm on clusters by writing a basic Storm Hello World example. Next we’ll introduce you to Trident and you’ll get a clear understanding of how you can develop and deploy a trident topology. We cover topics such as monitoring, Storm Parallelism, scheduler and log processing, in a very easy to understand manner. You will also learn how to integrate Storm with other well-known Big Data technologies such as HBase, Redis, Kafka, and Hadoop to realize the full potential of Storm.With real-world examples and clear explanations, this book will ensure you will have a thorough mastery of Apache Storm. You will be able to use this knowledge to develop efficient, distributed real-time applications to cater to your business needs.

382
Ebook

Mastering Blockchain. Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks

Imran Bashir

Blockchain is a distributed database that enables permanent, transparent, and secure storage of data. The blockchain technology is the backbone of cryptocurrency – in fact, it’s the shared public ledger upon which the entire Bitcoin network relies – and it’s gaining popularity with people who work in finance, government, and the arts.Blockhchain technology uses cryptography to keep data secure. This book gives a detailed description of this leading technology and its implementation in the real world.This book begins with the technical foundations of blockchain, teaching you the fundamentals of cryptography and how it keeps data secure. You will learn about the mechanisms behind cryptocurrencies and how to develop applications using Ethereum, a decentralized virtual machine. You will explore different blockchain solutions and get an exclusive preview into Hyperledger, an upcoming blockchain solution from IBM and the Linux Foundation. You will also be shown how to implement blockchain beyond currencies, scability with blockchain, and the future scope of this fascinating and powerful technology.

383
Ebook

Mastering Business Intelligence with MicroStrategy. Master Business Intelligence with Microstrategy 10

Dmitry Anoshin, Himani Rana, Ning Ma, Neil Mehta

Business intelligence is becoming more important by the day, with cloud offerings and mobile devices gaining wider acceptance and achieving better market penetration. MicroStrategy Reporting Suite is an absolute leader in the BI market and offers rich capabilities from basic data visualizations to predictive analytics. It lets you various delivery methods such as the Web, desktops, and mobiles.Using real-world BI scenarios, this book helps you to implement Business Analytics solutions in big e-commerce companies. It kicks off with MicroStrategy 10 features and then covers schema design models and techniques. Building upon your existing knowledge, the book will teach you advanced techniques for building documents and dashboards. It further teaches various graphical techniques for presenting data for analysis using maps, graphs, and advanced charts. Although MicroStrategy has rich functionality, the book will show how to customize it in order to meet your business requirements. You will also become familiar with the native analytical functions that will help you to maximize the impact of BI solutions with powerful predictive analytics. Furthermore, the book will focus on MicroStrategy Mobile Analytics along with data discovery and desktop capabilities such as connecting various data sources and building interactive dashboards. The book will also uncover best practices, troubleshooting techniques for MicroStrategy system administration, and also security and authentication techniques. Lastly, you will learn to use Hadoop for MicroStrategy reporting.By the end of the book, you will become proficient in evaluating any BI software in order to choose the best one that meets all business requirements.

384
Ebook