Analiza danych

481
Ebook

MicroStrategy Quick Start Guide. Data analytics and visualizations for Business Intelligence

Fernando Carlos Rivero Esqueda

MicroStrategy is an enterprise business intelligence application. It turns data into reports for making and executing key organization decisions. This book shows you how to implement Business Intelligence (BI) with MicroStrategy. It takes you from setting up and configuring MicroStrategy to security and administration.The book starts by detailing the different components of the MicroStrategy platform, and the key concepts of Metadata and Project Source. You will then install and configure MicroStrategy and lay down the foundations for building MicroStrategy BI solutions. By learning about objects and different object types, you will develop a strong understanding of the MicroStrategy Schema and Public Objects. With these MicroStrategy objects, you will enhance and scale your BI and Analytics solutions.Finally, you will learn about the administration, security, and monitoring of your BI solution.

482
Ebook
483
Ebook

Mistrz analizy danych. Od danych do wiedzy

John W. Foreman

Nauka o danych, znana również pod nazwą data science, jest stosunkowo nową, interdyscyplinarną dziedziną, zajmującą się różnymi technikami analizy danych, ich implementacją i wykorzystywaniem do różnych celów. Zalety nauki o danych doceniają specjaliści z wielu branż: analitycy biznesowi, statystycy, architekci oprogramowania i osoby zajmujące się sztuczną inteligencją. Tak naprawdę ta dziedzina nie koncentruje się na kodowaniu i bazach danych, ale raczej na metodach wyłuskiwania z danych najróżniejszych cennych informacji. Wartość tej wiedzy niejednokrotnie okazuje się ogromna. Niniejsza książka jest przystępnym wprowadzeniem do nauki o danych. Jest przeznaczona dla osób, które chcą stosować techniki analizy danych w biznesie. Te techniki, opisane na podstawie praktycznych przypadków, to m.in. optymalizacja, prognozowanie i symulacja, a także sztuczna inteligencja, teoria grafów, analiza skupień i wykrywanie anomalii. Dzięki tej książce nie tylko zrozumiesz zasady analizowania danych, ale także nauczysz się wybierać technikę właściwą do rozwiązania danego problemu. Poznasz też techniki pracy z prototypami. Co ciekawe, niemal wszystkie opisane tu metody zostały zaprezentowane w arkuszu kalkulacyjnym. W książce opisano m.in. optymalizację za pomocą programowania liniowego i całkowitoliczbowego szereg czasowy, wykrywanie trendów i wahań sezonowych przewidywanie za pomocą wygładzania wykładniczego metodę symulacji Monte Carlo test Tukeya i lokalne czynniki odstające język R - zaawansowane techniki analizy danych Wyciśnij z danych każdą kroplę wiedzy!

484
Ebook

Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter. Build scalable real-world projects to implement end-to-end neural networks on Android and iOS

Anubhav Singh, Rimjhim Bhadani

Deep learning is rapidly becoming the most popular topic in the mobile app industry. This book introduces trending deep learning concepts and their use cases with an industrial and application-focused approach. You will cover a range of projects covering tasks such as mobile vision, facial recognition, smart artificial intelligence assistant, augmented reality, and more.With the help of eight projects, you will learn how to integrate deep learning processes into mobile platforms, iOS, and Android. This will help you to transform deep learning features into robust mobile apps efficiently. You’ll get hands-on experience of selecting the right deep learning architectures and optimizing mobile deep learning models while following an application oriented-approach to deep learning on native mobile apps. We will later cover various pre-trained and custom-built deep learning model-based APIs such as machine learning (ML) Kit through Firebase. Further on, the book will take you through examples of creating custom deep learning models with TensorFlow Lite. Each project will demonstrate how to integrate deep learning libraries into your mobile apps, right from preparing the model through to deployment.By the end of this book, you’ll have mastered the skills to build and deploy deep learning mobile applications on both iOS and Android.

485
Ebook

Modelowanie danych przy użyciu Microsoft Power BI

Markus Ehrenmueller-Jensen

Samoobsługa i hurtownia danych przedsiębiorstwa z użyciem Power BI Modelowanie danych to najczęściej pomijana funkcja w Power BI Desktop, ale to właśnie ona wyróżnia Power BI spośród innych narzędzi dostępnych na rynku. Ta praktyczna książka posłuży Ci jako przycisk szybkiego przewijania do przodu dla modelowania danych przy użyciu Power BI, modelu tabelarycznego usług Analysis Services i baz danych SQL. Służy ona jako punkt wyjścia do modelowania danych, a także pomaga odświeżyć wiedzę. Autor Markus Ehrenmueller-Jensen, założyciel Savory Data, przedstawia podstawowe koncepcje modelu semantycznego Power BI wraz z praktycznymi przykładami w językach DAX, Power Query i T-SQL. Nauczysz się: - Normalizować i denormalizować dane - Stosować najlepsze praktyki dla obliczeń, flag i wskaźników, daty i godziny, wymiarów wielokrotnego stosowania i wymiarów wolnozmiennych - Pokonywać trudności związane z binningiem, budżetem, modelami zlokalizowanymi, modelami złożonymi czy tabelami zawierającymi pary kluczy i wartości - Odkrywać i rozwiązywać problemy z wydajnością za pośrednictwem modelu danych - Pracować z tabelami, relacjami, operacjami na zbiorach, postaciami normalnymi, modelowaniem wymiarowym i procesem ETL Markus Ehrenmueller-Jensen, założyciel Savory Data, od 1994 r. pracuje jako lider projektów, trener i konsultant w obszarze inżynierii danych, analityki biznesowej i danologii. Jest inżynierem oprogramowania i profesorem w HTL Leonding (wyższa szkoła techniczna), gdzie uczy baz danych i inżynierii projektów. Posiada kilka certyfikatów Microsoft, a także tytuł Microsoft Data Platform MVP. "Ta książka to wyczerpujący samouczek omawiający temat w języku, który jest łatwy do zrozumienia, a przy tym jest dogłębny, zwięzły i dokładny. Doświadczenie Markusa w zakresie modelowania danych będzie stanowić wartość dla każdego profesjonalisty pracującego z danymi przy użyciu Power BI". -Paul Turley Microsoft Data Platform MVP

486
Ebook

Modern Big Data Processing with Hadoop. Expert techniques for architecting end-to-end big data solutions to get valuable insights

V Naresh Kumar, Prashant Shindgikar

The complex structure of data these days requires sophisticated solutions for data transformation, to make the information more accessible to the users.This book empowers you to build such solutions with relative ease with the help of Apache Hadoop, along with a host of other Big Data tools.This book will give you a complete understanding of the data lifecycle management with Hadoop, followed by modeling of structured and unstructured data in Hadoop. It will also show you how to design real-time streaming pipelines by leveraging tools such as Apache Spark, and build efficient enterprise search solutions using Elasticsearch. You will learn to build enterprise-grade analytics solutions on Hadoop, and how to visualize your data using tools such as Apache Superset. This book also covers techniques for deploying your Big Data solutions on the cloud Apache Ambari, as well as expert techniques for managing and administering your Hadoop cluster. By the end of this book, you will have all the knowledge you need to build expert Big Data systems.

487
Ebook

Modern R Programming Cookbook. Recipes to simplify your statistical applications

Jaynal Abedin

R is a powerful tool for statistics, graphics, and statistical programming. It is used by tens of thousands of people daily to perform serious statistical analyses. It is a free, open source system whose implementation is the collective accomplishment of many intelligent, hard-working people. There are more than 2,000 available add-ons, and R is a serious rival to all commercial statistical packages. The objective of this book is to show how to work with different programming aspects of R. The emerging R developers and data science could have very good programming knowledge but might have limited understanding about R syntax and semantics. Our book will be a platform develop practical solution out of real world problem in scalable fashion and with very good understanding. You will work with various versions of R libraries that are essential for scalable data science solutions. You will learn to work with Input / Output issues when working with relatively larger dataset. At the end of this book readers will also learn how to work with databases from within R and also what and how meta programming helps in developing applications.

488
Ebook

Modern Time Series Forecasting with Python. Explore industry-ready time series forecasting using modern machine learning and deep learning

Manu Joseph

We live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML.This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You’ll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you’ll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability.By the end of this book, you’ll be able to build world-class time series forecasting systems and tackle problems in the real world.