Python

33
Eлектронна книга

ArcGIS Pro 2.x Cookbook. Create, manage, and share geographic maps, data, and analytical models using ArcGIS Pro

Tripp Corbin

ArcGIS is Esri's catalog of GIS applications with powerful tools for visualizing, maintaining, and analyzing data. ArcGIS makes use of the modern ribbon interface and 64-bit processing to increase the speed and efficiency of using GIS. It allows users to create amazing maps in both 2D and 3D quickly and easily. If you want to gain a thorough understanding of the various data formats that can be used in ArcGIS Pro and shared via ArcGIS Online, then this book is for you. Beginning with a refresher on ArcGIS Pro and how to work with projects, this book will quickly take you through recipes about using various data formats supported by the tool. You will learn the limits of each format, such as Shapefiles, Geodatabase, and CAD files, and learn how to link tables from outside sources to existing GIS data to expand the amount of data that can be used in ArcGIS. You'll learn methods for editing 2D and 3D data using ArcGIS Pro and how topology can be used to ensure data integrity. Lastly the book will show you how data and maps can be shared via ArcGIS Online and used with web and mobile applications.

34
Eлектронна книга

Architektura aplikacji w Pythonie. TDD, DDD i rozwój mikrousług reaktywnych

Harry Percival, Bob Gregory

Architektura aplikacji w Pythonie. TDD, DDD i rozwój mikrousług reaktywnych Python zyskuje coraz większą popularność i jest wykorzystywany do tworzenia bardzo różnych aplikacji, jednak projektowanie dużych, niezawodnych systemów w tym języku bywa wyzwaniem. Rozwijanie złożonych systemów o wysokiej jakości wymaga zastosowania odpowiedniej architektury. Trudno w Pythonie stosować takie wysokopoziomowe wzorce projektowe jak architektura sześciokątna, architektura oparta na zdarzeniach czy wzorce zalecane dla projektowania dziedzinowego (DDD). Sytuacji nie poprawia również to, że klasyczna literatura dotycząca metod zarządzania złożonością aplikacji zawiera przykłady kodu napisanego w Javie lub C#. Programiści Pythona często więc uznają takie książki za mało przydatne w swojej pracy. Ten praktyczny przewodnik przybliży projektantom pracującym w Pythonie sprawdzone wzorce architektury, które ułatwiają zapanowanie nad złożonością aplikacji i pozwalają najlepiej wykorzystać zestawy testów. Prezentację poszczególnych wzorców architektury oparto na przykładowej, stopniowo rozbudowywanej aplikacji. Podejście to pozwoliło na pokazanie zalet metodyki TDD. Z kolei w rozdziałach poświęconych modelowaniu dziedzinowemu zwrócono uwagę na unikanie jakichkolwiek zależności zewnętrznych przy równoczesnym zapewnieniu integralności danych. Wśród ciekawszych koncepcji warto wskazać wykorzystywanie zdarzeń w roli wzorca integracji usług w architekturze mikrousługowej. Niejako przy okazji zaprezentowano praktyczne strony stosowania kilku frameworków i technologii Pythona, między innymi Flask, SQLAlchemy, pytest, Docker i Redis. W tej książce między innymi: modelowanie dziedzinowe i stosowanie wzorców DDD jednostki, obiekty wartości i agregaty w architekturze domenowej tworzenie modeli bez zbędnych zależności zdarzenia, polecenia i szyna wiadomości wzorce architektury zdarzeniowej i mikrousług reaktywnych Architektura nowoczesnych aplikacji w Pythonie: rozwiązania dla poważnych systemów!

35
Eлектронна книга
36
Eлектронна книга

ArcPy and ArcGIS. Automating ArcGIS for Desktop and ArcGIS Online with Python - Second Edition

ArcGIS allows for complex analyses of geographic information. The ArcPy module is used to script these ArcGIS analyses, providing a productive way to perform geo-analyses and automate map production.The second edition of the book focuses on new Python tools, such as the ArcGIS API for Python. Using Python, this book will guide you from basic Python scripting to advanced ArcPy script tools.This book starts off with setting up your Python environment for ArcGIS automation. Then you will learn how to output maps using ArcPy in MXD and update feature class in a geodatabase using arcpy and ArcGIS Online. Next, you will be introduced to ArcREST library followed by examples on querying, updating and manipulating ArcGIS Online feature services. Further, you will be enabling your scripts in the browser and directly interacting with ArcGIS Online using Jupyter notebook. Finally, you can learn ways to use of ArcPy to control ArcGIS Enterprise and explore topics on deployments, data quality assurances, data updates, version control, and editing safeguards.By the end of the book, you will be equipped with the knowledge required to create automated analysis with administration reducing the time-consuming nature of GIS.

37
Eлектронна книга

Artificial Intelligence and Machine Learning Fundamentals. Develop real-world applications powered by the latest AI advances

Zsolt Nagy

Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples.As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law.By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills!

38
Eлектронна книга

Artificial Intelligence By Example. Acquire advanced AI, machine learning, and deep learning design skills - Second Edition

Denis Rothman

AI has the potential to replicate humans in every field. Artificial Intelligence By Example, Second Edition serves as a starting point for you to understand how AI is built, with the help of intriguing and exciting examples.This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs).This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing.By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions.

39
Eлектронна книга

Artificial Intelligence for IoT Cookbook. Over 70 recipes for building AI solutions for smart homes, industrial IoT, and smart cities

Michael Roshak

Artificial intelligence (AI) is rapidly finding practical applications across a wide variety of industry verticals, and the Internet of Things (IoT) is one of them. Developers are looking for ways to make IoT devices smarter and to make users’ lives easier. With this AI cookbook, you’ll be able to implement smart analytics using IoT data to gain insights, predict outcomes, and make informed decisions, along with covering advanced AI techniques that facilitate analytics and learning in various IoT applications.Using a recipe-based approach, the book will take you through essential processes such as data collection, data analysis, modeling, statistics and monitoring, and deployment. You’ll use real-life datasets from smart homes, industrial IoT, and smart devices to train and evaluate simple to complex models and make predictions using trained models. Later chapters will take you through the key challenges faced while implementing machine learning, deep learning, and other AI techniques, such as natural language processing (NLP), computer vision, and embedded machine learning for building smart IoT systems. In addition to this, you’ll learn how to deploy models and improve their performance with ease.By the end of this book, you’ll be able to package and deploy end-to-end AI apps and apply best practice solutions to common IoT problems.

40
Eлектронна книга

Artificial Intelligence with Python. A Comprehensive Guide to Building Intelligent Apps for Python Beginners and Developers

Prateek Joshi

Artificial Intelligence is becoming increasingly relevant in the modern world. By harnessing the power of algorithms, you can create apps which intelligently interact with the world around you, building intelligent recommender systems, automatic speech recognition systems and more.Starting with AI basics you'll move on to learn how to develop building blocks using data mining techniques. Discover how to make informed decisions about which algorithms to use, and how to apply them to real-world scenarios. This practical book covers a range of topics including predictive analytics and deep learning.

41
Eлектронна книга

Artificial Intelligence with Python Cookbook. Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6

Ben Auffarth

Artificial intelligence (AI) plays an integral role in automating problem-solving. This involves predicting and classifying data and training agents to execute tasks successfully. This book will teach you how to solve complex problems with the help of independent and insightful recipes ranging from the essentials to advanced methods that have just come out of research.Artificial Intelligence with Python Cookbook starts by showing you how to set up your Python environment and taking you through the fundamentals of data exploration. Moving ahead, you’ll be able to implement heuristic search techniques and genetic algorithms. In addition to this, you'll apply probabilistic models, constraint optimization, and reinforcement learning. As you advance through the book, you'll build deep learning models for text, images, video, and audio, and then delve into algorithmic bias, style transfer, music generation, and AI use cases in the healthcare and insurance industries. Throughout the book, you’ll learn about a variety of tools for problem-solving and gain the knowledge needed to effectively approach complex problems.By the end of this book on AI, you will have the skills you need to write AI and machine learning algorithms, test them, and deploy them for production.

42
Eлектронна книга

Artificial Intelligence with Python. Your complete guide to building intelligent apps using Python 3.x - Second Edition

Alberto Artasanchez, Prateek Joshi

Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications.This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data.Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques.

43
Eлектронна книга

Atlassian DevOps Toolchain Cookbook. Recipes for building, automating, and managing applications with Jira, Bitbucket Pipelines, and more

Robert Wen, Alex Ortiz, Edward Gaile, Rodney Nissen

Implementing DevOps practices and toolchains for automated testing and deployment can accelerate product development with minimal errors in the production environment. However, creating DevOps toolchains by integrating tools from various vendors presents challenges for both administrators and developers. Written by four well-known experts from the Atlassian community, this book addresses the complexities of DevOps toolchain creation and integration by leveraging Atlassian’s Open DevOps solution.Starting with a holistic overview of the DevOps and Atlassian Open DevOps solution, you’ll learn to integrate Jira with other tools. You’ll then find out how to create and integrate a CI/CD pipeline in Bitbucket for automated testing and deployment to Docker containers. With step-by-step guidance, you’ll connect Jira and Bitbucket with other tools, such as Snyk for security and SonarQube for testing, to form an extensive toolchain. You’ll also learn how Compass uses CheckOps for observability and how to use Confluence for documentation and reporting. Finally, you’ll leverage Opsgenie’s ChatOps functionality to enhance collaboration between developers and operations teams.By the end of this book, you’ll be able to establish your DevOps toolchain by integrating Atlassian tools to automate and optimize the software development lifecycle and beyond.

44
Eлектронна книга

Automated Machine Learning. Hyperparameter optimization, neural architecture search, and algorithm selection with cloud platforms

Adnan Masood, Ahmed Sherif

Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort.This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle.By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks.

45
Eлектронна книга

Automated Machine Learning with AutoKeras. Deep learning made accessible for everyone with just few lines of coding

Luis Sobrecueva

AutoKeras is an AutoML open-source software library that provides easy access to deep learning models. If you are looking to build deep learning model architectures and perform parameter tuning automatically using AutoKeras, then this book is for you.This book teaches you how to develop and use state-of-the-art AI algorithms in your projects. It begins with a high-level introduction to automated machine learning, explaining all the concepts required to get started with this machine learning approach. You will then learn how to use AutoKeras for image and text classification and regression. As you make progress, you'll discover how to use AutoKeras to perform sentiment analysis on documents. This book will also show you how to implement a custom model for topic classification with AutoKeras. Toward the end, you will explore advanced concepts of AutoKeras such as working with multi-modal data and multi-task, customizing the model with AutoModel, and visualizing experiment results using AutoKeras Extensions.By the end of this machine learning book, you will be able to confidently use AutoKeras to design your own custom machine learning models in your company.

46
Eлектронна книга

Automated Testing in Microsoft Dynamics 365 Business Central. Efficiently automate test cases in Dynamics NAV and Business Central

Luc van Vugt

Dynamics 365 Business Central is the new cloud-based SaaS ERP proposition from Microsoft. It’s not as simple as it used to be way back when it was called Navigator, Navision Financials, or Microsoft Business Solutions-Navision. Our development practices are becoming more formal, and with this, the call for test automation is pressing on us.This book will teach you to leverage testing tools available with Dynamics 365 Business Central to perform automated testing. We’ll begin with a quick introduction to automated testing, followed by an overview of test automation in Dynamics 365 Business Central. Then you’ll learn to design and build automated tests and we’ll go through some efficient methods to get from requirements to application and testing code. Lastly, you’ll learn to incorporate your own and Microsoft tests into your daily development practice.By the end of the book, you’ll be able to write your own automated tests for Dynamics 365 Business Central.

47
Eлектронна книга

AWS Certified Machine Learning Specialty: MLS-C01 Certification Guide. The definitive guide to passing the MLS-C01 exam on the very first attempt

Somanath Nanda, Weslley Moura

The AWS Certified Machine Learning Specialty exam tests your competency to perform machine learning (ML) on AWS infrastructure. This book covers the entire exam syllabus using practical examples to help you with your real-world machine learning projects on AWS.Starting with an introduction to machine learning on AWS, you'll learn the fundamentals of machine learning and explore important AWS services for artificial intelligence (AI). You'll then see how to prepare data for machine learning and discover a wide variety of techniques for data manipulation and transformation for different types of variables. The book also shows you how to handle missing data and outliers and takes you through various machine learning tasks such as classification, regression, clustering, forecasting, anomaly detection, text mining, and image processing, along with the specific ML algorithms you need to know to pass the exam. Finally, you'll explore model evaluation, optimization, and deployment and get to grips with deploying models in a production environment and monitoring them.By the end of this book, you'll have gained knowledge of the key challenges in machine learning and the solutions that AWS has released for each of them, along with the tools, methods, and techniques commonly used in each domain of AWS ML.

48
Eлектронна книга

AWS dla administratorów systemów. Tworzenie i utrzymywanie niezawodnych aplikacji chmurowych

Prashant Lakhera

Amazon Web Services (AWS) zdobywa coraz większe uznanie. Platforma AWS udostępnia znakomite rozwiązania, w tym usługi obliczeniowe, magazyn danych, obsługę sieci i usług zarządzanych. Aplikacje korporacyjne wdrożone w chmurze AWS mogą być wyjątkowo odporne, skalowalne i niezawodne. Aby takie były, administrator systemu musi jednak zrozumieć koncepcje zaawansowanego zarządzania chmurą i nauczyć się wykorzystywać je w praktyce zarówno podczas wdrażania systemu, jak i zarządzania nim. W tej książce omówiono techniki wdrażania systemów na platformie AWS i zasady zarządzania nimi. Zaprezentowano podstawy korzystania z usługi Identity and Access Management oraz narzędzia sieciowe i monitorujące chmury AWS. Poruszono tematy Virtual Private Cloud, Elastic Compute Cloud, równoważenia obciążenia, automatycznego skalowania oraz baz danych usługi Relational Database Service. Dokładnie przedstawiono zasady wdrażania aplikacji i zarządzania danymi. Pokazano też, w jaki sposób zainicjować automatyczne tworzenie kopii zapasowych oraz jak śledzić i przechowywać pliki dzienników. W książce znalazły się również informacje na temat interfejsów API platformy AWS i sposobu ich użycia oraz automatyzacji infrastruktury z wykorzystaniem usługi CloudFormation, narzędzia Terraform oraz skryptów w języku Python z biblioteką Boto3. W książce między innymi: zasady bezpieczeństwa w systemach chmurowych tworzenie usług Amazon Elastic Compute Cloud (EC2) konfiguracja centrum danych w chmurze AWS za pomocą sieci VPC automatyczne skalowanie aplikacji praca z dziennikami scentralizowanymi CloudWatch wykonywanie kopii zapasowych danych AWS, czyli dostępność, odporność i niezawodność aplikacji!