Бізнес ІТ

Książki online z kategorii Biznes IT pomogą Ci opanować takie zagadnienia techniczne, jak analiza danych, blockchain, czy programowanie. Znajdziesz tutaj także świetne pozycje dotyczące reklamy internetowej i ogólnie tego, jak z powodzeniem prowadzić biznes online. Omawiają one choćby to, jak analizować dane marketingowe oraz budować dobrą relację z klientem.

305
Eлектронна книга

Deep Learning for Natural Language Processing. Solve your natural language processing problems with smart deep neural networks

Karthiek Reddy Bokka, Shubhangi Hora, Tanuj Jain, Monicah Wambugu

Applying deep learning approaches to various NLP tasks can take your computational algorithms to a completely new level in terms of speed and accuracy. Deep Learning for Natural Language Processing starts by highlighting the basic building blocks of the natural language processing domain.The book goes on to introduce the problems that you can solve using state-of-the-art neural network models. After this, delving into the various neural network architectures and their specific areas of application will help you to understand how to select the best model to suit your needs. As you advance through this deep learning book, you’ll study convolutional, recurrent, and recursive neural networks, in addition to covering long short-term memory networks (LSTM). Understanding these networks will help you to implement their models using Keras. In later chapters, you will be able to develop a trigger word detection application using NLP techniques such as attention model and beam search.By the end of this book, you will not only have sound knowledge of natural language processing, but also be able to select the best text preprocessing and neural network models to solve a number of NLP issues.

306
Eлектронна книга

Deep Learning for Time Series Cookbook. Use PyTorch and Python recipes for forecasting, classification, and anomaly detection

Vitor Cerqueira, Luís Roque

Most organizations exhibit a time-dependent structure in their processes, including fields such as finance. By leveraging time series analysis and forecasting, these organizations can make informed decisions and optimize their performance. Accurate forecasts help reduce uncertainty and enable better planning of operations. Unlike traditional approaches to forecasting, deep learning can process large amounts of data and help derive complex patterns. Despite its increasing relevance, getting the most out of deep learning requires significant technical expertise.This book guides you through applying deep learning to time series data with the help of easy-to-follow code recipes. You’ll cover time series problems, such as forecasting, anomaly detection, and classification. This deep learning book will also show you how to solve these problems using different deep neural network architectures, including convolutional neural networks (CNNs) or transformers. As you progress, you’ll use PyTorch, a popular deep learning framework based on Python to build production-ready prediction solutions.By the end of this book, you'll have learned how to solve different time series tasks with deep learning using the PyTorch ecosystem.

307
Eлектронна книга

Deep learning i modelowanie generatywne. Jak nauczyć komputer malowania, pisania, komponowania i grania

David Foster

Techniki uczenia głębokiego rozwijają się w imponującym tempie, a sieci neuronowe znajdują zastosowanie w przeróżnych branżach. Coraz częściej komputer wykonuje zadania, które do niedawna były zarezerwowane dla człowieka. Dobrym przykładem jest tworzenie dzieł sztuki: ostatnie postępy w dziedzinie modelowania generatywnego sprawiają, że maszyny tworzą oryginalne obrazy w określonym stylu, piszą spójne akapity tekstu, komponują przyjemną w odbiorze muzykę i generują prawdopodobne scenariusze zdarzeń. Ta "generatywna rewolucja" już się zaczęła, a jej efekty przekraczają najśmielsze wyobrażenia. Ta książka jest praktycznym przewodnikiem przeznaczonym dla inżynierów uczenia maszynowego i analityków danych. W jasny i przystępny sposób omówiono w niej zasadnicze zagadnienia teorii modelowania generatywnego, a następnie zaprezentowano techniki stosowane do budowy modeli generatywnych, włącznie z ogólnym opisem uczenia głębokiego, wariacyjnych autoenkoderów i generatywnych sieci antagonistycznych (GAN). Na tej podstawie - z wykorzystaniem biblioteki Keras - pokazano wewnętrzne funkcjonowanie każdej z tych technik, łącznie z najbardziej nowatorskimi architekturami. Opisano krok po kroku sposoby rozwiązywania takich twórczych zadań jak malowanie, pisanie i komponowanie muzyki, a także zastosowania modelowania generatywnego do optymalizacji strategii grania w gry (modele World). W książce między innymi: działanie autoenkoderów wariacyjnych tworzenie sieci GAN, w tym CycleGAN i MuseGAN rekurencyjne modele generatywne do tworzenia tekstu oraz mechanizmy uwagi modele generatywne w środowiskach uczenia przez wzmacnianie architektura Transformer (BERT, GPT-2) oraz modele generowania obrazu Czy potrafisz stworzyć... twórcę?

308
Eлектронна книга

Deep Learning. Praca z językiem Python i biblioteką Keras

Francois Chollet

W skrócie uczenie maszynowe polega na wyodrębnianiu informacji z surowych danych i budowie modelu, który służy do przetwarzania kolejnych surowych danych. Technologia ta od kilku lat intensywnie się rozwija, a w miarę wzrostu jej możliwości rosną również zainteresowanie i oczekiwania architektów i użytkowników. Niektórzy widzą w głębokim uczeniu poważne zagrożenie, jednak obietnice, jakie daje ten rodzaj sztucznej inteligencji, są fascynujące. Narzędzia służące do programowania uczenia maszynowego, takie jak zaimplementowana w Pythonie biblioteka Keras, są dostępne dla każdego, kto chce wykorzystać tę technologię do własnych celów. Niniejsza książka jest praktycznym przewodnikiem po uczeniu głębokim. Znalazły się tu dokładne informacje o istocie uczenia głębokiego, o jego zastosowaniach i ograniczeniach. Wyjaśniono zasady rozwiązywania typowych problemów uczenia maszynowego. Pokazano, jak korzystać z pakietu Keras przy implementacji rozpoznawania obrazu, przetwarzania języka naturalnego, klasyfikacji obrazów, przewidywania danych szeregu czasowego, analizy sentymentu, generowania tekstu i obrazu. Nawet dość skomplikowane zagadnienia, włączając w to koncepcje i dobre praktyki, zostały wyjaśnione w sposób bardzo przystępny i zrozumiały, tak aby umożliwić samodzielne stosowanie technik uczenia głębokiego w kolejnych projektach. W tej książce między innymi: kontekst i ogólne koncepcje sztucznej inteligencji, uczenia maszynowego i uczenia głębokiego sieci neuronowe i pakiet Keras typowe sposoby pracy nad projektami uczenia głębokiego rozbudowane modele uczenia głębokiego oraz modele generatywne perspektywy i ograniczenia technologii Uczenie głębokie. Nikt nie zna granic tej technologii!

309
Eлектронна книга

Deep Learning. Praca z językiem R i biblioteką Keras

Francois Chollet, J. J. Allaire

W ostatnich latach byliśmy świadkami ogromnego postępu technik sztucznej inteligencji, uczenia maszynowego oraz uczenia głębokiego. Konsekwencje tego błyskawicznego rozwoju są odczuwalne w niemal każdej dziedzinie. Wydaje się, że to jedna z tych technologii, które powinny być dostępne dla jak najszerszej grupy ludzi. Dopiero wtedy uczenie głębokie wykorzysta w pełni swój potencjał i stanie się prawdziwym impulsem rozwoju naszej cywilizacji. Co prawda na pierwszy rzut oka ta niesamowita technologia może wydawać się wyjątkowo skomplikowana i trudna do zrozumienia, warto jednak wykorzystać dostępne narzędzia, takie jak biblioteka Keras i język R, aby implementować mechanizmy uczenia głębokiego wszędzie tam, gdzie okażą się przydatne. Ta książka jest znakomitym przewodnikiem po technikach uczenia głębokiego. Poza wyczerpująco przedstawionymi podstawami znajdziesz tu zasady implementacji tych technik z wykorzystaniem języka R i biblioteki Keras. Dzięki przystępnym wyjaśnieniom i praktycznym przykładom szybko zrozumiesz nawet bardziej skomplikowane zagadnienia uczenia głębokiego. Poznasz koncepcje i dobre praktyki związane z tworzeniem mechanizmów analizy obrazu, przetwarzania języka naturalnego i modeli generatywnych. Przeanalizujesz ponad 30 przykładów kodu uzupełnionego dokładnymi komentarzami. W efekcie szybko przygotujesz się do korzystania z uczenia głębokiego w rozwiązywaniu konkretnych problemów. W tej książce między innymi: podstawowe koncepcje sztucznej inteligencji, uczenia maszynowego i uczenia głębokiego wprowadzenie do budowy i trenowania sieci neuronowych uczenie głębokie w przetwarzaniu obrazów modele generatywne tworzące obrazy i tekst perspektywy i ograniczenia uczenia głębokiego Uczenie głębokie: zafascynuj się i zaimplementuj!

310
Eлектронна книга

Deep Learning. Praktyczne wprowadzenie

Josh Patterson, Adam Gibson

Technologie wykorzystujące różne formy uczenia maszynowego zaczynają pojawiać się w różnych branżach. Możliwości w tym zakresie stale rosną, podobnie jak zainteresowanie i oczekiwania. Przed podjęciem decyzji o wdrożeniu w firmie tego rodzaju rozwiązań trzeba jednak zadać sobie pytanie, co można i co chciałoby się osiągnąć za pomocą sieci neuronowej. Generalnie uczenie maszynowe opiera się na algorytmach wyodrębniania informacji z surowych danych i reprezentowania ich jako modelu. Model ten następnie służy do przetwarzania kolejnych surowych danych. Co to jednak oznacza w praktyce i jak się implementuje takie algorytmy? Niniejsza książka jest przydatnym przewodnikiem po uczeniu maszynowym i sieciach neuronowych. Zawiera praktyczne informacje, które doceni każdy programista stawiający pierwsze kroki w tej dziedzinie. Przedstawiono tu podstawy deep learningu i wyjaśniono takie pojęcia, jak strojenie sieci, wielowątkowość, wektoryzowanie danych. Opisano, w jaki sposób można wykorzystać otwartą bibliotekę Deeplearning4j (DL4J) do kodowania profesjonalnych procesów uczenia głębokiego. Zaprezentowano metody i strategie trenowania sieci głębokich i uruchamiania procesów uczenia głębokiego w środowiskach Spark i Hadoop. Zagadnienia te zostały zilustrowane gotowymi do zastosowania, praktycznymi przykładami. W tej książce między innymi: ogólne koncepcje uczenia maszynowego, uczenia głębokiego i sieci neuronowych ewolucja sieci neuronowych do sieci głębokich i ich rodzaje dobieranie rodzaju sieci do analizowanego zagadnienia strojenie sieci neuronowych i sieci głębokich korzystanie z narzędzia DataVec do wektoryzowania danych różnych typów stosowanie biblioteki DL4J w środowiskach Spark i Hadoop Uczenie głębokie i sieci neuronowe: przyszłość, która dzieje się dziś!

311
Eлектронна книга

Deep Learning Quick Reference. Useful hacks for training and optimizing deep neural networks with TensorFlow and Keras

Mike Bernico

Deep learning has become an essential necessity to enter the world of artificial intelligence. With this book deep learning techniques will become more accessible, practical, and relevant to practicing data scientists. It moves deep learning from academia to the real world through practical examples.You will learn how Tensor Board is used to monitor the training of deep neural networks and solve binary classification problems using deep learning. Readers will then learn to optimize hyperparameters in their deep learning models. The book then takes the readers through the practical implementation of training CNN's, RNN's, and LSTM's with word embeddings and seq2seq models from scratch. Later the book explores advanced topics such as Deep Q Network to solve an autonomous agent problem and how to use two adversarial networks to generate artificial images that appear real. For implementation purposes, we look at popular Python-based deep learning frameworks such as Keras and Tensorflow, Each chapter provides best practices and safe choices to help readers make the right decision while training deep neural networks.By the end of this book, you will be able to solve real-world problems quickly with deep neural networks.

312
Eлектронна книга

Deep Learning. Receptury

Douwe Osinga

Pomysł, by komputery wykorzystywać do generowania inteligentnych rozwiązań, narodził się w zamierzchłych dla informatyki czasach, mniej więcej w połowie XX wieku. Bardzo długo jednak idea ta - z powodu ograniczeń technologicznych - nie mogła wyjść poza rozważania teoretyczne. Dziś osoby zainteresowane uczeniem głębokim są w komfortowej sytuacji: mogą korzystać z ogólnie dostępnych frameworków uczenia głębokiego, sięgać po ogromne zbiory danych, a ponadto wyniki tego rodzaju badań znalazły się w centrum zainteresowania biznesu. Okazuje się, że nawet bez szczególnego przygotowania teoretycznego można budować i udoskonalać potężne modele sieci neuronowych oraz uczenia głębokiego i wdrażać je w konkretnych sytuacjach. Dzięki tej książce, nawet jeśli nie posiadasz zaawansowanej wiedzy o uczeniu głębokim (oryg. deep learning), zaczniesz szybko tworzyć rozwiązania z tego zakresu. Zamieszczone tu receptury pozwolą Ci sprawnie zaznajomić się z takimi zastosowaniami uczenia głębokiego jak klasyfikacja, generowanie tekstów, obrazów i muzyki. Cennym elementem książki są informacje o rozwiązywaniu problemów z sieciami neuronowymi - testowanie sieci wciąż jest trudnym zagadnieniem. Ponadto znalazły się w niej porady dotyczące pozyskiwania danych niezbędnych do trenowania sieci, a także receptury, dzięki którym łatwiej zacząć użytkować modele w środowiskach produkcyjnych. Z tej książki dowiesz się, jak: tworzyć użyteczne aplikacje, które docenią użytkownicy obliczać podobieństwo tekstów wizualizować wewnętrzny stan systemu sztucznej inteligencji napisać usługę odwrotnego wyszukiwania obrazów za pomocą wyuczonych sieci wykorzystać sieci GAN, autoenkodery i LSTM do generowania ikon wykrywać style w utworach muzycznych Uczenie głębokie - rzecz dla kreatywnych filozofów z myszą w dłoni!