Other

161
Ebook

QlikView Unlocked. Unlock more than 50 amazing tips and tricks to enhance your QlikView skills

Andrew Dove, Roger Stone

QlikView Unlocked will provide you with new insights to get the very best from QlikView. This book will help you to develop skills to work with data efficiently. We will cover all the secrets of unleashing the full power of QlikView, which will enable you to make better use of the tool and create better results for future projects. In the course of this book, we will walk you through techniques and best practices that will enable you to be more productive. You will gain quick insights into the tool with the help of short steps called ”keys,” which will help you discover new features of QlikView. Moving on you will learn new techniques for data visualization, scripting, data modeling, and more. This book will then cover best practices to help you establish an efficient system with improved performance. We will also teach you some tricks that will help you speed up development processes, monitor data with dashboards, and so on.By the end of this book, you will have gained beneficial tips, tricks, and techniques to enhance the overall experience of working with QlikView.

162
Ebook

R: Data Analysis and Visualization. Click here to enter text

Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, ...

The R learning path created for you has five connected modules, which are a mini-course in their own right. As you complete each one, you'll have gained key skills and be ready for the material in the next module!This course begins by looking at the Data Analysis with R module. This will help you navigate the R environment. You'll gain a thorough understanding of statistical reasoning and sampling. Finally, you'll be able to put best practices into effect to make your job easier and facilitate reproducibility.The second place to explore is R Graphs, which will help you leverage powerful default R graphics and utilize advanced graphics systems such as lattice and ggplot2, the grammar of graphics. You'll learn how to produce, customize, and publish advanced visualizations using this popular and powerful framework.With the third module, Learning Data Mining with R, you will learn how to manipulate data with R using code snippets and be introduced to mining frequent patterns, association, and correlations while working with R programs.The Mastering R for Quantitative Finance module pragmatically introduces both the quantitative finance concepts and their modeling in R, enabling you to build a tailor-made trading system on your own. By the end of the module, you will be well-versed with various financial techniques using R and will be able to place good bets while making financial decisions.Finally, we'll look at the Machine Learning with R module. With this module, you'll discover all the analytical tools you need to gain insights from complex data and learn how to choose the correct algorithm for your specific needs. You'll also learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, and so on.

163
Ebook

R for Data Science Cookbook. Over 100 hands-on recipes to effectively solve real-world data problems using the most popular R packages and techniques

Yu-Wei, Chiu (David Chiu)

This cookbook offers a range of data analysis samples in simple and straightforward R code, providing step-by-step resources and time-saving methods to help you solve data problems efficiently.The first section deals with how to create R functions to avoid the unnecessary duplication of code. You will learn how to prepare, process, and perform sophisticated ETL for heterogeneous data sources with R packages. An example of data manipulation is provided, illustrating how to use the “dplyr” and “data.table” packages to efficiently process larger data structures. We also focus on “ggplot2” and show you how to create advanced figures for data exploration.In addition, you will learn how to build an interactive report using the “ggvis” package. Later chapters offer insight into time series analysis on financial data, while there is detailed information on the hot topic of machine learning, including data classification, regression, clustering, association rule mining, and dimension reduction.By the end of this book, you will understand how to resolve issues and will be able to comfortably offer solutions to problems encountered while performing data analysis.

164
Ebook

R Machine Learning By Example. Understand the fundamentals of machine learning with R and build your own dynamic algorithms to tackle complicated real-world problems successfully

Dipanjan Sarkar, Raghav Bali

Data science and machine learning are some of the top buzzwords in the technical world today. From retail stores to Fortune 500 companies, everyone is working hard to making machine learning give them data-driven insights to grow their business. With powerful data manipulation features, machine learning packages, and an active developer community, R empowers users to build sophisticated machine learning systems to solve real-world data problems.This book takes you on a data-driven journey that starts with the very basics of R and machine learning and gradually builds upon the concepts to work on projects that tackle real-world problems.You’ll begin by getting an understanding of the core concepts and definitions required to appreciate machine learning algorithms and concepts. Building upon the basics, you will then work on three different projects to apply the concepts of machine learning, following current trends and cover major algorithms as well as popular R packages in detail. These projects have been neatly divided into six different chapters covering the worlds of e-commerce, finance, and social-media, which are at the very core of this data-driven revolution. Each of the projects will help you to understand, explore, visualize, and derive insights depending upon the domain and algorithms.Through this book, you will learn to apply the concepts of machine learning to deal with data-related problems and solve them using the powerful yet simple language, R.

165
Ebook

R: Mining spatial, text, web, and social media data. Create and customize data mining algorithms

Nathan H. Danneman, Richard Heimann, Pradeepta Mishra, Bater Makhabel

Data mining is the first step to understanding data and making sense of heaps of data. Properly mined data forms the basis of all data analysis and computing performed on it. This learning path will take you from the very basics of data mining to advanced data mining techniques, and will end up with a specialized branch of data mining—social media mining.You will learn how to manipulate data with R using code snippets and how to mine frequent patterns, association, and correlation while working with R programs. You will discover how to write code for various predication models, stream data, and time-series data. You will also be introduced to solutions written in R based on R Hadoop projects. Now that you are comfortable with data mining with R, you will move on to implementing your knowledge with the help of end-to-end data mining projects. You will learn how to apply different mining concepts to various statistical and data applications in a wide range of fields. At this stage, you will be able to complete complex data mining cases and handle any issues you might encounter during projects.After this, you will gain hands-on experience of generating insights from social media data. You will get detailed instructions on how to obtain, process, and analyze a variety of socially-generated data while providing a theoretical background to accurately interpret your findings. You will be shown R code and examples of data that can be used as a springboard as you get the chance to undertake your own analyses of business, social, or political data.This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products:? Learning Data Mining with R by Bater Makhabel ? R Data Mining Blueprints by Pradeepta Mishra? Social Media Mining with R by Nathan Danneman and Richard Heimann

166
Ebook

Real-World Implementation of C# Design Patterns. Overcome daily programming challenges using elements of reusable object-oriented software

Bruce M. Van Horn II, Van Symons

As a software developer, you need to learn new languages and simultaneously get familiarized with the programming paradigms and methods of leveraging patterns, as both a communications tool and an advantage when designing well-written, easy-to-maintain code. Design patterns, being a collection of best practices, provide the necessary wisdom to help you overcome common sets of challenges in object-oriented design and programming.This practical guide to design patterns helps C# developers put their programming knowledge to work. The book takes a hands-on approach to introducing patterns and anti-patterns, elaborating on 14 patterns along with their real-world implementations. Throughout the book, you'll understand the implementation of each pattern, as well as find out how to successfully implement those patterns in C# code within the context of a real-world project.By the end of this design patterns book, you’ll be able to recognize situations that tempt you to reinvent the wheel, and quickly avoid the time and cost associated with solving common and well-understood problems with battle-tested design patterns.

167
Ebook

Responsible AI in the Enterprise. Practical AI risk management for explainable, auditable, and safe models with hyperscalers and Azure OpenAI

Adnan Masood, Heather Dawe, Ed Price, Dr. Ehsan Adeli

Responsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance. Throughout the book, you’ll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You’ll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You’ll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you’ll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You’ll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations.By the end of this book, you’ll be well-equipped with tools and techniques to create transparent and accountable machine learning models.

168
Ebook

Rola archiwów w procesie wdrażania systemów elektronicznego zarządzania dokumentacją. Z doświadczeń archiwów szkół wyższych, instytucji naukowych i kulturalnych oraz państwowych i samorządowych jednostek organizacyjnych

red. Antoni Barciak, Dorota Drzewiecka, Katarzyna Pepłowska

Książka omawia trudny proces jakim jest wdrażanie systemów EZD w działalności jednostek organizacyjnych w kontekście informatyzacji państwa.  W literaturze naukowej  coraz więcej miejsca poświęca się tematyce projektowania i wdrażania systemów do elektronicznego zarządzania dokumentacją. Niestety zbyt mało mówi się o udziale archiwistów, często można odnieść wrażanie, że są oni pomijani w tym ważnym procesie. Z drugiej strony, należy przypomnieć, że wiedza, którą dysponują archiwiści w wielu kwestiach związanych z zarządzaniem dokumentacją pozwoliłaby uniknąć licznych problemów występujących w praktyce. Niniejsza książka wypełnią tę lukę, bowiem koncentruje się na doświadczeniach archiwów i ich roli w procesie wdrażania EZD. Książka  jest  szerokim spojrzeniem na działalność archiwów. Jest adresowana archiwistom, pracownikom jednostek organizacyjnych, dysponentom oraz studentom. Zawiera w sobie praktyczne wyjaśnienie procesów wdrażania EZD dzięki czemu może stanowić cenne źródło wiedzy dla wszystkich, którzy obecnie zmagają z  problemem EZD.

169
Ebook

Salesforce Platform App Builder Certification Handbook. A handy guide that covers the most essential topics for Salesforce Platform App Builder Certification in an easy-to-understand format

Siddhesh Kabe

The Salesforce Certified Platform App Builder exam is for individuals who want to demonstrate their skills and knowledge in designing, building, and implementing custom applications using the declarative customization capabilities of Force.com. This book will build a strong foundation in Force.com to prepare you for the platform app builder certification exam. It will guide you through designing the interface while introducing the Lightning Process Builder. Next, we will implement business logic using various point and click features of Force.com. We will learn to manage data and create reports and dashboards. We will then learn to administer the force.com application by configuring the object-level, field-level, and record-level security. By the end of this book, you will be completely equipped to take the Platform App Builder certification exam.

170
Ebook

SAP Data Services 4.x Cookbook. Delve into the SAP Data Services environment to efficiently prepare, implement, and develop ETL processes

Ivan Shomnikov, Stanislav Pereyaslov

Want to cost effectively deliver trusted information to all of your crucial business functions? SAP Data Services delivers one enterprise-class solution for data integration, data quality, data profiling, and text data processing. It boosts productivity with a single solution for data quality and data integration. SAP Data Services also enables you to move, improve, govern, and unlock big data. This book will lead you through the SAP Data Services environment to efficiently develop ETL processes. To begin with, you’ll learn to install, configure, and prepare the ETL development environment. You will get familiarized with the concepts of developing ETL processes with SAP Data Services. Starting from smallest unit of work- the data flow, the chapters will lead you to the highest organizational unit—the Data Services job, revealing the advanced techniques of ETL design. You will learn to import XML files by creating and implementing real-time jobs. It will then guide you through the ETL development patterns that enable the most effective performance when extracting, transforming, and loading data. You will also find out how to create validation functions and transforms.Finally, the book will show you the benefits of data quality management with the help of another SAP solution—Information Steward.

171
Ebook

Scalable Data Architecture with Java. Build efficient enterprise-grade data architecting solutions using Java

Sinchan Banerjee

Java architectural patterns and tools help architects to build reliable, scalable, and secure data engineering solutions that collect, manipulate, and publish data.This book will help you make the most of the architecting data solutions available with clear and actionable advice from an expert.You’ll start with an overview of data architecture, exploring responsibilities of a Java data architect, and learning about various data formats, data storage, databases, and data application platforms as well as how to choose them. Next, you’ll understand how to architect a batch and real-time data processing pipeline. You’ll also get to grips with the various Java data processing patterns, before progressing to data security and governance. The later chapters will show you how to publish Data as a Service and how you can architect it. Finally, you’ll focus on how to evaluate and recommend an architecture by developing performance benchmarks, estimations, and various decision metrics.By the end of this book, you’ll be able to successfully orchestrate data architecture solutions using Java and related technologies as well as to evaluate and present the most suitable solution to your clients.

172
Ebook

Scientific Computing with Python 3. Click here to enter text

Claus Führer, Jan Erik Solem, Olivier Verdier

Python can be used for more than just general-purpose programming. It is a free, open source language and environment that has tremendous potential for use within the domain of scientific computing. This book presents Python in tight connection with mathematical applications and demonstrates how to use various concepts in Python for computing purposes, including examples with the latest version of Python 3. Python is an effective tool to use when coupling scientific computing and mathematics and this book will teach you how to use it for linear algebra, arrays, plotting, iterating, functions, polynomials, and much more.

173
Ebook

Serverless Machine Learning with Amazon Redshift ML. Create, train, and deploy machine learning models using familiar SQL commands

Debu Panda, Phil Bates, Bhanu Pittampally, Sumeet Joshi, ...

Amazon Redshift Serverless enables organizations to run petabyte-scale cloud data warehouses quickly and in a cost-effective way, enabling data science professionals to efficiently deploy cloud data warehouses and leverage easy-to-use tools to train models and run predictions. This practical guide will help developers and data professionals working with Amazon Redshift data warehouses to put their SQL knowledge to work for training and deploying machine learning models.The book begins by helping you to explore the inner workings of Redshift Serverless as well as the foundations of data analytics and types of data machine learning. With the help of step-by-step explanations of essential concepts and practical examples, you’ll then learn to build your own classification and regression models. As you advance, you’ll find out how to deploy various types of machine learning projects using familiar SQL code, before delving into Redshift ML. In the concluding chapters, you’ll discover best practices for implementing serverless architecture with Redshift.By the end of this book, you’ll be able to configure and deploy Amazon Redshift Serverless, train and deploy machine learning models using Amazon Redshift ML, and run inference queries at scale.

174
Ebook

Siatka danych. Nowoczesna koncepcja samoobsługowej infrastruktury danych

Zhamak Dehghani

Dostęp do danych jest warunkiem rozwoju niejednej organizacji. Aby w pełni skorzystać z ich potencjału i uzyskać dzięki nim konkretną wartość, konieczne jest odpowiednie zarządzanie danymi. Obecnie stosowane rozwiązania w tym zakresie nie nadążają już za złożonością dzisiejszych organizacji, rozprzestrzenianiem się źródeł danych i rosnącymi aspiracjami inżynierów, którzy rozwijają techniki sztucznej inteligencji i analizy danych. Odpowiedzią na te potrzeby może być siatka danych (Data Mesh), jednak praktyczna implementacja tej koncepcji wymaga istotnej zmiany myślenia. Ta książka szczegółowo wyjaśnia paradygmat siatki danych, a przy tym koncentruje się na jego praktycznym zastosowaniu. Zgodnie z tym nowatorskim podejściem dane należy traktować jako produkt, a dziedziny - jako główne zagadnienie. Poza wyjaśnieniem paradygmatu opisano tu zasady projektowania wysokopoziomowej architektury komponentów siatki danych, a także przedstawiono wskazówki i porady dotyczące ewolucyjnej realizacji siatki danych w organizacji. Tematyka ta została potraktowana wszechstronnie: omówiono kwestie technologiczne, organizacyjne, jak również socjologiczne i kulturowe. Dzięki temu jest to cenna lektura zarówno dla architektów i inżynierów, jak i dla badaczy, analityków danych, wreszcie dla liderów i kierowników zespołów. W książce: wyczerpujące wprowadzenie do paradygmatu siatki danych siatka danych i jej komponenty projektowanie architektury siatki danych opracowywanie i realizacja strategii siatki danych zdecentralizowany model własności danych przejście z hurtowni i jezior danych do rozproszonej siatki danych Siatka danych: kolejny etap rozwoju technologii big data!

175
Ebook

Simplifying Data Engineering and Analytics with Delta. Create analytics-ready data that fuels artificial intelligence and business intelligence

Anindita Mahapatra, Doug May

Delta helps you generate reliable insights at scale and simplifies architecture around data pipelines, allowing you to focus primarily on refining the use cases being worked on. This is especially important when you consider that existing architecture is frequently reused for new use cases.In this book, you’ll learn about the principles of distributed computing, data modeling techniques, and big data design patterns and templates that help solve end-to-end data flow problems for common scenarios and are reusable across use cases and industry verticals. You’ll also learn how to recover from errors and the best practices around handling structured, semi-structured, and unstructured data using Delta. After that, you’ll get to grips with features such as ACID transactions on big data, disciplined schema evolution, time travel to help rewind a dataset to a different time or version, and unified batch and streaming capabilities that will help you build agile and robust data products.By the end of this Delta book, you’ll be able to use Delta as the foundational block for creating analytics-ready data that fuels all AI/BI use cases.

176
Ebook

Skazany na sukces. Kariera w Data Science

Jacqueline Nolis, Emily Robinson

Nauka o danych, zwana danologią, zyskuje na znaczeniu. Dane dla gospodarki są tym, czym dotąd były węgiel, stal i ropa naftowa. Umiejętność korzystania z wiedzy zawartej w danych decyduje o efektywności prowadzenia działalności gospodarczej i determinuje rozwój nowych modeli, rozwiązań i relacji gospodarczych. Już teraz specjaliści danolodzy są rozchwytywani na rynku pracy. Aby jednak w pełni i do końca wykorzystać pojawiające się możliwości, trzeba wiedzieć, w jaki sposób podejść do trudnego zagadnienia, jakim jest budowanie ścieżki kariery i podążanie nią w odpowiednim dla siebie tempie. To praktyczny przewodnik, dzięki któremu łatwiej zdobędziesz pierwszą pracę związaną z badaniem danych, szybciej staniesz się cenionym specjalistą i w miarę rozwoju zawodowego będziesz coraz trafniej wychwytywać pojawiające się możliwości awansu i zmiany pracy na atrakcyjniejszą. Dowiesz się, jak zdobyć podstawowe umiejętności i jak faktycznie wyglądają konkretne stanowiska pracy. Opisano tu również, jak pomyślnie przejść przez proces rekrutacji i zaaklimatyzować się w nowych warunkach. Nie zabrakło cennych wskazówek dotyczących awansowania na stanowiska kierownicze. Jako danolog prędko się przekonasz, że zawarta tutaj wiedza nietechniczna jest bardzo potrzebna do osiągnięcia sukcesu na polu badania danych. Dzięki tej książce dowiesz się, jak: tworzyć świetne portfolio projektów z zakresu badania danych wyszukiwać, oceniać i negocjować oferty z klasą zmieniać miejsca pracy wybierać i skutecznie realizować scenariusze kariery poradzili sobie inni wybitni analitycy danych! Danologia: nauka, pasja i sposób na życie!