Інше

145
Eлектронна книга

Principles of Data Science. Mathematical techniques and theory to succeed in data-driven industries

Sinan Ozdemir

Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you’ll feel confident about asking—and answering—complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas.With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you’ll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You’ll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means.

146
Eлектронна книга

Principles of Data Science. Understand, analyze, and predict data using Machine Learning concepts and tools - Second Edition

Sinan Ozdemir, Sunil Kakade, Marco Tibaldeschi

Need to turn programming skills into effective data science skills? This book helps you connect mathematics, programming, and business analysis. You’ll feel confident asking—and answering—complex, sophisticated questions of your data, making abstract and raw statistics into actionable ideas.Going through the data science pipeline, you'll clean and prepare data and learn effective data mining strategies and techniques to gain a comprehensive view of how the data science puzzle fits together. You’ll learn fundamentals of computational mathematics and statistics and pseudo-code used by data scientists and analysts. You’ll learn machine learning, discovering statistical models that help control and navigate even the densest datasets, and learn powerful visualizations that communicate what your data means.

147
Eлектронна книга

Production-Ready Applied Deep Learning. Learn how to construct and deploy complex models in PyTorch and TensorFlow deep learning frameworks

Tomasz Palczewski, Jaejun (Brandon) Lee, Lenin Mookiah

Machine learning engineers, deep learning specialists, and data engineers encounter various problems when moving deep learning models to a production environment. The main objective of this book is to close the gap between theory and applications by providing a thorough explanation of how to transform various models for deployment and efficiently distribute them with a full understanding of the alternatives.First, you will learn how to construct complex deep learning models in PyTorch and TensorFlow. Next, you will acquire the knowledge you need to transform your models from one framework to the other and learn how to tailor them for specific requirements that deployment environments introduce. The book also provides concrete implementations and associated methodologies that will help you apply the knowledge you gain right away. You will get hands-on experience with commonly used deep learning frameworks and popular cloud services designed for data analytics at scale. Additionally, you will get to grips with the authors’ collective knowledge of deploying hundreds of AI-based services at a large scale.By the end of this book, you will have understood how to convert a model developed for proof of concept into a production-ready application optimized for a particular production setting.

148
Eлектронна книга

Projektowanie baz danych dla każdego. Przewodnik krok po kroku

Michael J. Hernandez

Praktyczny przewodnik dla projektantów baz danych! Dzisiejszy świat opiera się na bazach danych. Są one sercem każdego przedsięwzięcia, począwszy od działalności banku, a na zakupach internetowych skończywszy. Ich projektowanie wymaga nie lada kunsztu, a drobny błąd może doprowadzić do nieoczekiwanych konsekwencji. Dlatego od projektantów baz danych wymaga się ogromnej wiedzy i dokładności, a doświadczenie w tej dziedzinie zdobywa się latami. Dzięki tej książce będziesz w stanie zgłębić tajniki budowy baz danych, podane w przejrzysty, przystępny i rozsądny sposób. W trakcie lektury poznasz rodzaje baz, ich dostępne modele oraz cel ich projektowania. Kolejne rozdziały dotyczą procesu projektowania nowej bazy oraz analizowania baz istniejących. Ponadto dowiesz się z nich, jak istotne jest właściwe określenie kluczy i relacji oraz nałożenie więzów integralności. Szczególną uwagę powinieneś zwrócić na rozdział poświęcony najczęściej popełnianym błędom - jego dokładna lektura pozwoli Ci uniknąć wielu problemów. Książka ta jest obowiązkową lekturą dla wszystkich osób mających styczność z bazami danych w codziennej pracy. Dzięki tej książce: poznasz rodzaje baz danych zorganizujesz proces projektowania bazy nauczysz się analizować strukturę istniejącej bazy unikniesz pułapek poznasz tajniki baz danych Wiedza dotycząca baz danych w pigułce!

149
Eлектронна книга

Projektowanie baz danych dla każdego. Przewodnik krok po kroku. Wydanie IV

Michael J. Hernandez

Mimo upływu lat relacyjne bazy danych wciąż mają się świetnie! Z każdym rokiem stają się coraz doskonalsze i radzą sobie z coraz większymi zbiorami danych. Wciąż jednak podstawą dobrej aplikacji bazodanowej jest dobry projekt samej bazy. Wielu osobom projektowanie poprawnych struktur bazodanowych wydaje się czymś z pogranicza wyższej matematyki i czarnej magii. Tymczasem zdobycie tej umiejętności jest możliwe bez lat studiowania skomplikowanych teorii matematycznych. Wystarczy przyswoić kluczowe podstawy i nauczyć się korzystać z kilku zdroworozsądkowych koncepcji i teorii. Ta książka jest rocznicowym, przejrzanym i zaktualizowanym wydaniem kultowego podręcznika do samodzielnej nauki projektowania relacyjnych baz danych. Zawarte w nim informacje można wykorzystywać niezależnie od zastosowanego oprogramowania. Przedstawiono tu, jak projektować nowoczesne bazy danych, które mają poprawną strukturę, są niezawodne i ułatwiają wprowadzanie zmian. Opisano wszystkie etapy projektowania: od planowania po definiowanie tabel, pól, kluczy, relacji między tabelami, reguł biznesowych i widoków. Dodatkowo znajdziemy tu praktyczne techniki zwiększania integralności danych, omówienie często popełnianych błędów i wskazówki, kiedy warto łamać zasady. Treść przewodnika wzbogacają pytania kontrolne i rysunki, które bardzo pomagają w jej skutecznym opanowaniu. W książce: typy baz danych, modele i cele projektowe tworzenie tabel i relacji, specyfikacje pól i widoki poziomy integralności danych tworzenie reguł biznesowych perspektywy relacyjnych baz danych Nie ma dobrej bazy danych bez dobrego projektu!

150
Eлектронна книга

Prywatność danych w praktyce. Skuteczna ochrona prywatności i bezpieczeństwa danych

Katharine Jarmul

Chyba nikogo nie trzeba przekonywać, że ochrona danych i zabezpieczenie prywatności są kwestiami absolutnie kluczowymi w cyfrowym świecie. Na szczęście zdajemy sobie coraz lepiej sprawę, że incydenty naruszeń w dziedzinie bezpieczeństwa danych mogą nas narazić na realne szkody. Z drugiej strony niedopełnienie obowiązków wynikających z RODO okazuje się dla organizacji niezwykle kosztowne, a także naraża na szwank ich wizerunek. Zapewnienie należytej ochrony danych to wymagające wyzwanie. Z tego względu inżynieria prywatności z roku na rok staje się coraz ważniejszą dziedziną. Książka w przystępny sposób przedstawia głęboką perspektywę techniczną wraz z przeglądem najnowszych podejść i architektur technologicznych. Emily F. Gorcenski, główna analityczka danych, Thoughtworks Tę książkę docenią osoby, które w ramach codziennej pracy integrują tematy związane z prywatnością i bezpieczeństwem danych. To przewodnik dla pragmatyków, zapewniający gruntowną wiedzę o współczesnych elementach ochrony danych, takich jak prywatność różnicowa, uczenie federacyjne i obliczenia szyfrowane. Znajdziesz tu przydatne wskazówki, jak również najlepsze, wielokrotnie sprawdzone praktyki integracji przełomowych technologii, pozwalające skutecznie i na wysokim poziomie dbać o prywatność i bezpieczeństwo danych. Najważniejsze zagadnienia: Jak przepisy (RODO i CCPA) mają się do przepływów danych i przypadków ich użycia? Jak właściwie anonimizować dane? Czy szyfrowanie homomorficzne jest właściwym rozwiązaniem? Jak wybierać technologie i metody ochrony prywatności? Jak zapewnić bezpieczeństwo danych w projektach opartych na ich analizie? Jak odpowiednio wdrożyć wewnętrzne zasady ochrony prywatności danych? Wreszcie znalazłem książkę, którą mogę polecać wszystkim unikającym tematu prywatności danych! Vincent Warmerdam, twórca Calm Code, inżynier uczenia maszynowego, Explosion

151
Eлектронна книга

Przewodnik po MongoDB. Wydajna i skalowalna baza danych. Wydanie III

Shannon Bradshaw, Eoin Brazil, Kristina Chodorow

MongoDB jest wieloplatformowym, nierelacyjnym systemem do obsługi baz danych, napisanym w języku C++. Nie przypomina ściśle ustrukturyzowanych relacyjnych baz danych, zamiast tego korzysta z dokumentów w formacie BSON. Ułatwia to bardziej naturalne przetwarzanie informacji w aplikacjach, oczywiście przy zachowaniu możliwości tworzenia hierarchii oraz indeksowania. W ten sposób cały system zyskuje na wydajności, co jest szczególnie istotne przy przetwarzaniu bardzo dużych zbiorów danych. MongoDB umożliwia stosowanie elastycznych modeli danych, uzyskiwanie wysokiego poziomu dostępności i poziome skalowanie. Ten praktyczny przewodnik jest przeznaczony dla użytkowników bazy MongoDB w wersji 4.2. W przystępny i konkretny sposób opisuje zalety stosowania dokumentowych baz danych, równocześnie wskazuje zaawansowane metody konfiguracji systemu oraz możliwe zastosowania w różnych projektach. Książka zainteresuje zarówno użytkowników i administratorów MongoDB, jak i programistów tworzących złożone aplikacje. Przedstawia kwestie tworzenia zapytań, indeksów, agregacji, transakcji, zbiorów replik, zarządzania systemem, shardingu i administrowania danymi, trwałości danych, monitorowania systemu oraz jego zabezpieczenia. Znalazło się tu także wprowadzenie do pracy z MongoDB, omówiono też zasady pracy z klastrem shardów oraz administrowania aplikacją i serwerem bazy MongoDB. W książce między innymi: ogólne zasady pracy z MongoDB operacje zapisu i wyszukiwania oraz tworzenie złożonych zapytań indeksy w kolekcjach, agregowanie danych i transakcje lokalny zbiór replik i korzystanie z replikacji konfiguracja elementów klastra monitorowanie systemu, kopie bezpieczeństwa i odtwarzanie bazy MongoDB MongoDB - przekonaj się na własnym systemie!

152
Eлектронна книга

Python Data Analysis Cookbook. Clean, scrape, analyze, and visualize data with the power of Python!

Ivan Idris

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning.Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining.In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code.By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.