Деталі електронної книги

Generatywna sztuczna inteligencja na platformie AWS. Tworzenie multimodalnych aplikacji wnioskujących kontekstowo

Generatywna sztuczna inteligencja na platformie AWS. Tworzenie multimodalnych aplikacji wnioskujących kontekstowo

Chris Fregly, Antje Barth, Shelbee Eigenbrode

Eлектронна книга

Podczas projektowania aplikacji opartych na generatywnej AI trzeba dokonywać wielu wyborów decydujących o jakości danych dostarczanych przez aplikację, jej opłacalności, skalowalności i niezawodności. Decyzje te są tym trudniejsze, że świat generatywnej AI zmienia się niezwykle szybko, a mity i błędne przeświadczenia dotyczące tej technologii mają się świetnie.

W tej niezwykle pragmatycznej książce, przeznaczonej dla dyrektorów technicznych, praktyków uczenia maszynowego, twórców aplikacji, analityków biznesowych, inżynierów i badaczy danych, znajdziesz skuteczne techniki używania sztucznej inteligencji. Zaznajomisz się z cyklem życia projektu opartego na generatywnej AI i jej zastosowaniami, a także metodami doboru i dostrajania modeli, generowania danych wspomaganego wyszukiwaniem, uczenia przez wzmacnianie na podstawie informacji zwrotnych od człowieka, kwantyzacji, optymalizacji i wdrażania modeli. Poznasz szczegóły różnych typów modeli, między innymi dużych językowych (LLM), multimodalnych generujących obrazy (Stable Diffusion) i odpowiadających na pytania wizualne (Flamingo/IDEFICS).

Dowiedz się, jak:

  • używać generatywnej AI w biznesie
  • dobierać modele generatywnej AI
  • stosować inżynierię monitu i uczenie kontekstowe
  • dostrajać modele przy użyciu własnych zbiorów danych i techniki LoRA
  • korzystać z agentów i akcji za pomocą bibliotek LangChain i ReAct
  • tworzyć aplikacje na bazie usługi Amazon Bedrock

To fascynująca książka, rewelacyjna kompozycja niezwykle ważnych informacji, a także szczegółowych, praktycznych kodów, skryptów i instrukcji!

Jeff Barr, wiceprezes i główny popularyzator AWS

Wprowadzenie

1. Podstawy generatywnej sztucznej inteligencji, przypadki użycia i cykl życia projektu

  • Przykłady użycia i zadania
  • Modele podstawowe i centra modeli
  • Cykl życia projektu generatywnej sztucznej inteligencji
  • Generatywna sztuczna inteligencja w chmurze AWS
  • Dlaczego chmura AWS?
  • Tworzenie aplikacji opartych na generatywnej sztucznej inteligencji w chmurze AWS
  • Podsumowanie

2. Inżynieria monitu i uczenie kontekstowe

  • Monity i uzupełnienia
  • Tokeny
  • Inżynieria monitu
  • Struktura monitu
    • Instrukcja
    • Kontekst
  • Uczenie kontekstowe na kilku przykładach
    • Uczenie bez przykładów
    • Uczenie na jednym przykładzie
    • Uczenie na kilku przykładach
    • Błędne uczenie kontekstowe
    • Dobre praktyki uczenia kontekstowego
  • Dobre praktyki inżynierii monitu
  • Parametry wnioskowania
  • Podsumowanie

3. Podstawowe duże modele językowe

  • Podstawowe duże modele językowe
  • Tokenizery
  • Wektory osadzeń
  • Architektura transformera
    • Dane wejściowe i okno kontekstowe
    • Osadzenia
    • Koder
    • Warstwy samouwagi
    • Dekoder
    • Funkcja softmax
  • Rodzaje modeli podstawowych opartych na transformerach
  • Zbiory danych do wstępnego trenowania modeli
  • Reguły skalowania
  • Modele optymalne obliczeniowo
  • Podsumowanie

4. Optymalizacja pamięci i obliczeń

  • Wyzwania pamięciowe
  • Typy i precyzja danych
  • Kwantyzacja
    • Typ fp16
    • Typ bfloat16
    • Typ fp8
    • Typ int8
  • Optymalizacja warstw samouwagi
    • FlashAttention
    • Grouped-Query Attention
  • Rozproszone przetwarzanie danych
    • Algorytm DDP
    • Algorytm FSDP
    • Porównanie wydajności algorytmów FSDP i DDP
  • Rozproszone przetwarzanie danych w chmurze AWS
    • Algorytm FSDP w klastrze Amazon SageMaker
    • Pakiet AWS Neuron SDK i akcelerator AWS Trainium
  • Podsumowanie

5. Dostrajanie i ocenianie modelu

  • Dostrajanie za pomocą instrukcji
    • Llama 2-Chat
    • Falcon-Chat
    • FLAN-T5
  • Zbiór instrukcji
    • Zbiór różnorodnych instrukcji
    • FLAN - przykładowy zbiór różnorodnych instrukcji
    • Szablon monitu
    • Konwersja niestandardowego zbioru danych w zbiór instrukcji
  • Dostrajanie modelu za pomocą niestandardowych instrukcji
    • Amazon SageMaker Studio
    • Amazon SageMaker JumpStart
    • Klasa Amazon SageMaker Estimator dla centrum Hugging Face
  • Ocenianie modelu
    • Wskaźniki skuteczności
    • Testy porównawcze i zbiory danych
  • Podsumowanie

6. Dostrajanie PEFT

  • Dostrajanie pełne i PEFT
  • LoRA i QLoRA
    • Podstawy techniki LoRA
    • Rząd macierzy
    • Docelowe moduły i warstwy
    • Implementacja techniki LoRA
    • Scalanie adaptera LoRA z oryginalnym modelem
    • Osobne adaptery LoRA
    • Skuteczność dostrajania pełnego i LoRA
    • QLoRA
  • Zmiękczanie i dostrajanie monitu
  • Podsumowanie

7. Metoda RLHF

  • Ludzkie wartości: przydatność, uczciwość, nieszkodliwość
  • Podstawy uczenia przez wzmacnianie
  • Niestandardowy system nagradzania
    • Gromadzenie danych treningowych z zaangażowaniem człowieka
    • Przykładowe instrukcje dla adnotatorów
    • Gromadzenie adnotacji z wykorzystaniem usługi Amazon SageMaker Ground Truth
    • Przygotowanie danych do wytrenowania systemu nagradzania
    • Trening systemu nagradzania
  • System nagradzania - detektor toksyczności firmy Meta
  • Dostrajanie modelu z wykorzystaniem techniki RLHF
    • Zastosowanie systemu nagradzania i techniki RLHF
    • Algorytm PPO
    • Dostrajanie modelu przy użyciu techniki RLHF i algorytmu PPO
    • Zapobieganie hakowaniu nagród
    • Zastosowanie dostrajania PEFT i techniki RLHF
  • Ocenianie modelu dostrojonego z użyciem techniki RLHF
    • Ocena jakościowa
    • Ocena ilościowa
    • Załadowanie systemu oceniania
    • Definicja funkcji zwracającej zagregowaną ocenę
    • Porównanie ocen przed dostrojeniem i po nim
  • Podsumowanie

8. Optymalizacja wdrożenia modelu

  • Optymalizacja modelu pod kątem wnioskowania
    • Przycinanie modelu
    • Kwantyzacje PTQ i GPTQ
    • Destylacja
  • Kontener LMI
  • AWS Inferentia: specjalny sprzęt do wnioskowania
  • Strategie aktualizowania i wdrażania modeli
    • Testy A/B
    • Wdrożenie równoległe
  • Wskaźniki i monitoring
  • Autoskalowanie
    • Zasady autoskalowania
    • Definiowanie zasady autoskalowania
  • Podsumowanie

9. Aplikacje wnioskujące kontekstowo w oparciu o technikę RAG i agentów

  • Ograniczenia modeli LLM
    • Halucynacje
    • Odcięcie wiedzy
  • Generowanie wspomagane pobieraniem
    • Zewnętrzne źródła wiedzy
    • Proces RAG
    • Załadowanie dokumentów
    • Fragmentowanie dokumentów
    • Pobieranie dokumentów i ponowny ranking wyników
    • Rozszerzenie monitu
  • Koordynacja i implementacja techniki RAG
    • Ładowanie i fragmentowanie dokumentów
    • Magazyn wektorów osadzeń i pobieranie danych
    • Łańcuch pobrań
    • Ponowny ranking z wykorzystaniem algorytmu MMR
  • Agent
    • Platforma ReAct
    • Platforma PAL
  • Aplikacje oparte na generatywnej sztucznej inteligencji
  • FMOps - utrzymanie cyklu życia projektu aplikacji opartej na generatywnej sztucznej inteligencji
    • Eksperymentowanie
    • Programowanie
    • Wdrożenie w środowisku produkcyjnym
  • Podsumowanie

10. Multimodalne modele podstawowe

  • Zastosowania multimodalnych modeli generatywnej sztucznej inteligencji
  • Dobre praktyki inżynierii multimodalnego monitu
  • Generowanie i udoskonalanie obrazów
    • Generowanie obrazów
    • Edycja i udoskonalanie obrazów
  • Wrysowanie, rozrysowanie i podrysowanie obrazu
    • Wrysowanie obrazu
    • Rozrysowanie obrazu
    • Podrysowanie obrazu
  • Podpisywanie obrazów, moderowanie treści i odpowiadanie na wizualne pytania
    • Podpisywanie obrazów
    • Moderowanie treści
    • Odpowiadanie na wizualne pytania
  • Ocena modelu
    • Generatywna konwersja tekstu na obraz
    • Dyfuzja w przód
    • Rozumowanie niewerbalne
  • Podstawy algorytmu dyfuzyjnego
    • Dyfuzja w przód
    • Dyfuzja wstecz
    • Sieć U-Net
  • Model Stable Diffusion 2
    • Koder tekstu
    • Sieć U-Net i proces dyfuzji
    • Kondycjonowanie tekstu
    • Uwaga krzyżowa
    • Harmonogram
    • Dekoder obrazu
  • Model Stable Diffusion XL
    • Sieć U-Net i uwaga krzyżowa
    • Rafinator
    • Kondycjonowanie
  • Podsumowanie

11. Sterowanie procesem generowania obrazów i dostrajanie modelu Stable Diffusion

  • ControlNet
  • Dostrajanie modelu
    • DreamBooth
    • Metody DreamBooth, PEFT i LoRA
    • Inwersja tekstu
  • Dostosowywanie modelu do ludzkich wartości przy użyciu techniki RLHF
  • Podsumowanie

12. Amazon Bedrock - usługa zarządzana dla generatywnej sztucznej inteligencji

  • Modele podstawowe w usłudze Amazon Bedrock
    • Modele Amazon Titan
    • Modele Stability AI Stable Diffusion
  • Interfejs API usługi Amazon Bedrock do wnioskowania
  • Modele LLM
    • Generowanie kodu SQL
    • Streszczanie tekstu
    • Osadzenia
  • Dostrajanie modeli
  • Agenci
  • Modele multimodalne
    • Tworzenie obrazu z tekstu
    • Tworzenie obrazów z obrazów
  • Prywatność danych i bezpieczeństwo sieci
  • Zarządzanie i monitorowanie
  • Podsumowanie
  • Назва: Generatywna sztuczna inteligencja na platformie AWS. Tworzenie multimodalnych aplikacji wnioskujących kontekstowo
  • Автор: Chris Fregly, Antje Barth, Shelbee Eigenbrode
  • Оригінальна назва: Generative AI on AWS: Building Context-Aware Multimodal Reasoning Applications
  • Переклад: Andrzej Watrak
  • ISBN: 978-83-289-1475-9, 9788328914759
  • Дата видання: 2024-10-09
  • Формат: Eлектронна книга
  • Ідентифікатор видання: geszin
  • Видавець: Helion