Категорії
Електронні книги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комп'ютер в офісі
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Мультимедійне навчання
- Нерухомість
- Переконання та НЛП
- Податки
- Соціальна політика
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Звіти, аналізи
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Електронна преса
- Architektura i wnętrza
- Biznes i Ekonomia
- Будинок та сад
- Електронний бізнес
- Фінанси
- Особисті фінанси
- Бізнес
- Фотографія
- Інформатика
- Відділ кадрів та оплата праці
- Комп'ютери, Excel
- Бухгалтерія
- Культура та література
- Наукові та академічні
- Охорона навколишнього середовища
- Впливові
- Освіта
- Податки
- Подорожі
- Психологія
- Релігія
- Сільське господарство
- Ринок книг і преси
- Транспорт та спедиція
- Здоров'я та краса
-
Історія
-
Інформатика
- Офісні застосунки
- Бази даних
- Біоінформатика
- Бізнес ІТ
- CAD/CAM
- Digital Lifestyle
- DTP
- Електроніка
- Цифрова фотографія
- Комп'ютерна графіка
- Ігри
- Хакування
- Hardware
- IT w ekonomii
- Наукові пакети
- Шкільні підручники
- Основи комп'ютера
- Програмування
- Мобільне програмування
- Інтернет-сервери
- Комп'ютерні мережі
- Стартап
- Операційні системи
- Штучний інтелект
- Технологія для дітей
- Вебмайстерність
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Оповідна поезія
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Шкільні підручники
-
Науково-популярна та академічна
- Археологія
- Bibliotekoznawstwo
- Кінознавство / Теорія кіно
- Філологія
- Польська філологія
- Філософія
- Finanse i bankowość
- Географія
- Економіка
- Торгівля. Світова економіка
- Історія та археологія
- Історія мистецтва і архітектури
- Культурологія
- Мовознавство
- літературні студії
- Логістика
- Математика
- Ліки
- Гуманітарні науки
- Педагогіка
- Навчальні засоби
- Науково-популярна
- Інше
- Психологія
- Соціологія
- Театральні студії
- Богослов’я
- Економічні теорії та науки
- Transport i spedycja
- Фізичне виховання
- Zarządzanie i marketing
-
Порадники
-
Ігрові посібники
-
Професійні та спеціальні порадники
-
Юридична
- Безпека життєдіяльності
- Історія
- Дорожній кодекс. Водійські права
- Юридичні науки
- Охорона здоров'я
- Загальне, компендіум
- Академічні підручники
- Інше
- Закон про будівництво і житло
- Цивільне право
- Фінансове право
- Господарське право
- Господарське та комерційне право
- Кримінальний закон
- Кримінальне право. Кримінальні злочини. Кримінологія
- Міжнародне право
- Міжнародне та іноземне право
- Закон про охорону здоров'я
- Закон про освіту
- Податкове право
- Трудове право та законодавство про соціальне забезпечення
- Громадське, конституційне та адміністративне право
- Кодекс про шлюб і сім'ю
- Аграрне право
- Соціальне право, трудове право
- Законодавство Євросоюзу
- Промисловість
- Сільське господарство та захист навколишнього середовища
- Словники та енциклопедії
- Державні закупівлі
- Управління
-
Путівники та подорожі
- Африка
- Альбоми
- Південна Америка
- Центральна та Північна Америка
- Австралія, Нова Зеландія, Океанія
- Австрія
- Азії
- Балкани
- Близький Схід
- Болгарія
- Китай
- Хорватія
- Чеська Республіка
- Данія
- Єгипет
- Естонія
- Європа
- Франція
- Гори
- Греція
- Іспанія
- Нідерланди
- Ісландія
- Литва
- Латвія
- Mapy, Plany miast, Atlasy
- Мініпутівники
- Німеччина
- Норвегія
- Активні подорожі
- Польща
- Португалія
- Інше
- Росія
- Румунія
- Словаччина
- Словенія
- Швейцарія
- Швеція
- Світ
- Туреччина
- Україна
- Угорщина
- Велика Британія
- Італія
-
Психологія
- Філософія життя
- Kompetencje psychospołeczne
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Аудіокниги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Нерухомість
- Переконання та НЛП
- Податки
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Історія
-
Інформатика
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Науково-популярна та академічна
-
Порадники
-
Професійні та спеціальні порадники
-
Юридична
-
Путівники та подорожі
-
Психологія
- Філософія життя
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Відеокурси
-
Бази даних
-
Big Data
-
Biznes, ekonomia i marketing
-
Кібербезпека
-
Data Science
-
DevOps
-
Для дітей
-
Електроніка
-
Графіка / Відео / CAX
-
Ігри
-
Microsoft Office
-
Інструменти розробки
-
Програмування
-
Особистісний розвиток
-
Комп'ютерні мережі
-
Операційні системи
-
Тестування програмного забезпечення
-
Мобільні пристрої
-
UX/UI
-
Веброзробка, Web development
-
Управління
Подкасти
- Електронні книги
- Науково-популярна та академічна
- Математика
- Podstawy matematyki w data science. Algebra liniowa, rachunek prawdopodobieństwa i statystyka
Деталі електронної книги
Podstawy matematyki w data science. Algebra liniowa, rachunek prawdopodobieństwa i statystyka
Rosnąca dostępność danych sprawiła, że data science i uczenie maszynowe są powszechnie używane do przeróżnych celów. Równocześnie wiele osób pomija analizy matematyczne przed rozpoczęciem przetwarzania danych. A to wiąże się z ryzykiem popełnienia istotnych błędów już na etapie projektowania danego systemu. Dopiero dogłębne zrozumienie niektórych koncepcji matematycznych i umiejętność ich praktycznego zastosowania sprawia, że kandydat na analityka danych ma szansę osiągnąć poziom profesjonalisty.
To książka przeznaczona dla osób, które chcą dobrze zrozumieć matematyczne podstawy nauki o danych i nauczyć się stosowania niektórych koncepcji w praktyce. Wyjaśniono tu takie zagadnienia jak rachunek różniczkowy i całkowy, rachunek prawdopodobieństwa, algebra liniowa i statystyka, pokazano także, w jaki sposób posługiwać się nimi w regresji liniowej, regresji logistycznej i w tworzeniu sieci neuronowych. Poszczególne tematy zostały omówione zrozumiale, przystępnie, bez naukowego żargonu, za to z licznymi praktycznymi przykładami, co dodatkowo ułatwia przyswojenie koncepcji i prawideł matematyki. Opanowanie zawartej tu wiedzy pozwala uniknąć wielu kosztownych błędów projektowych i trafniej wybierać optymalne rozwiązania!
Dzięki książce nauczysz się:
- używać kodu Pythona i jego bibliotek do eksplorowania koncepcji matematycznych
- posługiwać się regresją liniową i regresją logistyczną
- opisywać dane metodami statystycznymi i testować hipotezy
- manipulować wektorami i macierzami
- łączyć wiedzę matematyczną z użyciem modeli regresji
- unikać typowych błędów w stosowaniu matematyki w data science
Zrozum matematykę i efektywnie używaj danych!
Przedmowa
1. Podstawy matematyki oraz rachunku różniczkowego i całkowego
- Teoria liczb
- Kolejność działań
- Zmienne
- Funkcje
- Sumowanie
- Potęgowanie
- Logarytmy
- Liczba Eulera i logarytmy naturalne
- Liczba Eulera
- Logarytmy naturalne
- Granice
- Pochodne
- Pochodne cząstkowe
- Reguła łańcuchowa
- Całki
- Podsumowanie
- Ćwiczenia
2. Prawdopodobieństwo
- Zrozumieć prawdopodobieństwo
- Prawdopodobieństwo a statystyka
- Matematyka prawdopodobieństw
- Prawdopodobieństwa łączne
- Prawdopodobieństwa alternatywne
- Prawdopodobieństwo warunkowe i twierdzenie Bayesa
- Łączne i alternatywne prawdopodobieństwa warunkowe
- Rozkład dwumianowy
- Rozkład beta
- Podsumowanie
- Ćwiczenia
3. Statystyka opisowa i wnioskowanie statystyczne
- Czym są dane?
- Statystyka opisowa a wnioskowanie statystyczne
- Populacje, próby i obciążenie
- Statystyka opisowa
- Średnia i średnia ważona
- Mediana
- Dominanta
- Wariancja i odchylenie standardowe
- Rozkład normalny
- Dystrybuanta odwrotna
- Standaryzacja Z
- Wnioskowanie statystyczne
- Centralne twierdzenie graniczne
- Przedziały ufności
- Wartości p
- Testowanie hipotez
- Rozkład t: analizowanie małych prób
- Big data i błąd teksańskiego snajpera
- Podsumowanie
- Ćwiczenia
4. Algebra liniowa
- Co to jest wektor?
- Dodawanie i łączenie wektorów
- Skalowanie wektorów
- Powłoka i zależność liniowa
- Przekształcenia liniowe
- Wektory bazowe
- Mnożenie macierzy przez wektor
- Mnożenie macierzy
- Wyznaczniki
- Specjalne rodzaje macierzy
- Macierz kwadratowa
- Macierz jednostkowa
- Macierz odwrotna
- Macierz diagonalna
- Macierz trójkątna
- Macierz rzadka
- Układy równań i macierze odwrotne
- Wektory i wartości własne
- Podsumowanie
- Ćwiczenia
5. Regresja liniowa
- Podstawowa regresja liniowa
- Reszty i kwadraty błędu
- Znajdowanie najlepiej dopasowanej linii
- Równanie w formie zamkniętej
- Techniki wykorzystujące macierze odwrotne
- Metoda gradientu prostego
- Nadmierne dopasowanie i wariancja
- Metoda stochastycznego gradientu prostego
- Współczynnik korelacji
- Istotność statystyczna
- Współczynnik determinacji
- Błąd standardowy estymacji
- Przedziały przewidywania
- Podział danych na treningowe i testowe
- Wielokrotna regresja liniowa
- Podsumowanie
- Ćwiczenia
6. Regresja logistyczna i klasyfikacja
- Na czym polega regresja logistyczna?
- Przeprowadzanie regresji logistycznej
- Funkcja logistyczna
- Dopasowywanie krzywej logistycznej
- Regresja logistyczna z wieloma zmiennymi
- Logarytm szansy
- R-kwadrat
- Wartości p
- Podziały na dane treningowe i testowe
- Macierz błędów
- Twierdzenie Bayesa a klasyfikacja
- Krzywa ROC/pole pod krzywą
- Nierównowaga klas
- Podsumowanie
- Ćwiczenia
7. Sieci neuronowe
- Kiedy używać sieci neuronowych i uczenia głębokiego?
- Prosta sieć neuronowa
- Funkcje aktywacji
- Propagacja w przód
- Propagacja wsteczna
- Obliczanie pochodnych względem wag i biasów
- Metoda gradientu stochastycznego
- Używanie scikit-learn
- Ograniczenia sieci neuronowych i uczenia maszynowego
- Podsumowanie
- Ćwiczenie
8. Porady zawodowe i droga naprzód
- Nowa definicja data science
- Krótka historia data science
- Szukanie przewagi
- Biegłość w SQL-u
- Biegłość w programowaniu
- Wizualizacja danych
- Znajomość branży
- Produktywna nauka
- Praktyk czy doradca?
- Na co trzeba uważać w pracy związanej z data science?
- Definicja roli
- Skupienie organizacyjne i akceptacja
- Adekwatne zasoby
- Rozsądne cele
- Konkurowanie z istniejącymi systemami
- Twoja rola nie jest tym, czego się spodziewałeś
- Czy Twoja praca marzeń nie istnieje?
- Co dalej?
- Podsumowanie
A. Tematy dodatkowe
B. Odpowiedzi do ćwiczeń
Skorowidz
- Назва: Podstawy matematyki w data science. Algebra liniowa, rachunek prawdopodobieństwa i statystyka
- Автор: Thomas Nield
- Оригінальна назва: Essential Math for Data Science: Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics
- Переклад: Grzegorz Werner
- ISBN: 978-83-8322-014-7, 9788383220147
- Дата видання: 2023-02-14
- Формат: Eлектронна книга
- Ідентифікатор видання: pomads
- Видавець: Helion