Категорії
Електронні книги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комп'ютер в офісі
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Мультимедійне навчання
- Нерухомість
- Переконання та НЛП
- Податки
- Соціальна політика
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Звіти, аналізи
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Електронна преса
- Architektura i wnętrza
- Biznes i Ekonomia
- Будинок та сад
- Електронний бізнес
- Фінанси
- Особисті фінанси
- Бізнес
- Фотографія
- Інформатика
- Відділ кадрів та оплата праці
- Комп'ютери, Excel
- Бухгалтерія
- Культура та література
- Наукові та академічні
- Охорона навколишнього середовища
- Впливові
- Освіта
- Податки
- Подорожі
- Психологія
- Релігія
- Сільське господарство
- Ринок книг і преси
- Транспорт та спедиція
- Здоров'я та краса
-
Історія
-
Інформатика
- Офісні застосунки
- Бази даних
- Біоінформатика
- Бізнес ІТ
- CAD/CAM
- Digital Lifestyle
- DTP
- Електроніка
- Цифрова фотографія
- Комп'ютерна графіка
- Ігри
- Хакування
- Hardware
- IT w ekonomii
- Наукові пакети
- Шкільні підручники
- Основи комп'ютера
- Програмування
- Мобільне програмування
- Інтернет-сервери
- Комп'ютерні мережі
- Стартап
- Операційні системи
- Штучний інтелект
- Технологія для дітей
- Вебмайстерність
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Оповідна поезія
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Шкільні підручники
-
Науково-популярна та академічна
- Археологія
- Bibliotekoznawstwo
- Кінознавство / Теорія кіно
- Філологія
- Польська філологія
- Філософія
- Finanse i bankowość
- Географія
- Економіка
- Торгівля. Світова економіка
- Історія та археологія
- Історія мистецтва і архітектури
- Культурологія
- Мовознавство
- літературні студії
- Логістика
- Математика
- Ліки
- Гуманітарні науки
- Педагогіка
- Навчальні засоби
- Науково-популярна
- Інше
- Психологія
- Соціологія
- Театральні студії
- Богослов’я
- Економічні теорії та науки
- Transport i spedycja
- Фізичне виховання
- Zarządzanie i marketing
-
Порадники
-
Ігрові посібники
-
Професійні та спеціальні порадники
-
Юридична
- Безпека життєдіяльності
- Історія
- Дорожній кодекс. Водійські права
- Юридичні науки
- Охорона здоров'я
- Загальне, компендіум
- Академічні підручники
- Інше
- Закон про будівництво і житло
- Цивільне право
- Фінансове право
- Господарське право
- Господарське та комерційне право
- Кримінальний закон
- Кримінальне право. Кримінальні злочини. Кримінологія
- Міжнародне право
- Міжнародне та іноземне право
- Закон про охорону здоров'я
- Закон про освіту
- Податкове право
- Трудове право та законодавство про соціальне забезпечення
- Громадське, конституційне та адміністративне право
- Кодекс про шлюб і сім'ю
- Аграрне право
- Соціальне право, трудове право
- Законодавство Євросоюзу
- Промисловість
- Сільське господарство та захист навколишнього середовища
- Словники та енциклопедії
- Державні закупівлі
- Управління
-
Путівники та подорожі
- Африка
- Альбоми
- Південна Америка
- Центральна та Північна Америка
- Австралія, Нова Зеландія, Океанія
- Австрія
- Азії
- Балкани
- Близький Схід
- Болгарія
- Китай
- Хорватія
- Чеська Республіка
- Данія
- Єгипет
- Естонія
- Європа
- Франція
- Гори
- Греція
- Іспанія
- Нідерланди
- Ісландія
- Литва
- Латвія
- Mapy, Plany miast, Atlasy
- Мініпутівники
- Німеччина
- Норвегія
- Активні подорожі
- Польща
- Португалія
- Інше
- Росія
- Румунія
- Словаччина
- Словенія
- Швейцарія
- Швеція
- Світ
- Туреччина
- Україна
- Угорщина
- Велика Британія
- Італія
-
Психологія
- Філософія життя
- Kompetencje psychospołeczne
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Аудіокниги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Нерухомість
- Переконання та НЛП
- Податки
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Історія
-
Інформатика
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Науково-популярна та академічна
-
Порадники
-
Професійні та спеціальні порадники
-
Юридична
-
Путівники та подорожі
-
Психологія
- Філософія життя
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Відеокурси
-
Бази даних
-
Big Data
-
Biznes, ekonomia i marketing
-
Кібербезпека
-
Data Science
-
DevOps
-
Для дітей
-
Електроніка
-
Графіка / Відео / CAX
-
Ігри
-
Microsoft Office
-
Інструменти розробки
-
Програмування
-
Особистісний розвиток
-
Комп'ютерні мережі
-
Операційні системи
-
Тестування програмного забезпечення
-
Мобільні пристрої
-
UX/UI
-
Веброзробка, Web development
-
Управління
Подкасти
- Електронні книги
- Програмування
- Python
- Python dla DevOps. Naucz się bezlitośnie skutecznej automatyzacji
Деталі електронної книги
Python dla DevOps. Naucz się bezlitośnie skutecznej automatyzacji
Noah Gift, Kennedy Behrman, Alfredo Deza, Grig Gheorghiu
Ostatnia dekada zmieniła oblicze IT. Kluczowego znaczenia nabrały big data, a chmura i automatyzacja rozpowszechniły się wszędzie tam, gdzie mowa o efektywności. Inżynierowie muszą wykorzystywać zalety systemów linuksowych w codziennej praktyce, aby zapewnić należyty poziom automatyzacji swoich zadań. Do tych celów świetnie nadaje się Python. Język ten zdobywa coraz większe uznanie z uwagi na jego wszechstronność, jak również wydajność, przenaszalność i bezpieczeństwo kodu. Warto więc wykorzystywać Pythona do administrowania systemami Linux wraz z takimi narzędziami DevOps jak Docker, Kubernetes i Terraform.
Dzięki tej książce dowiesz się, jak sobie z tym poradzić. Znalazło się w niej krótkie wprowadzenie do Pythona oraz do automatyzacji przetwarzania tekstu i obsługi systemu plików, a także do pisania własnych narzędzi wiersza poleceń. Zaprezentowano również przydatne narzędzia linuksowe, systemy zarządzania pakietami oraz systemy budowania, monitorowania i automatycznego testowania kodu. Zagadnienia te szczególnie zainteresują specjalistów DevOps. Ponadto zawarto tu podstawowe informacje o chmurze obliczeniowej, usługach IaC i systemach Kubernetes. Omówiono zasady uczenia maszynowego i inżynierii danych z perspektywy DevOps. Przedstawiono także kompletny przewodnik po procesach budowania, wdrażania oraz operacyjnego wykorzystywania modelu uczenia maszynowego z użyciem systemów Flask, sklearn, Docker i Kubernetes.
W tej książce:
- wprowadzenie do Pythona
- automatyczne przetwarzanie tekstu oraz automatyzacja operacji na plikach
- automatyzacja za pomocą sprawdzonych narzędzi linuksowych
- chmura, infrastruktura jako kod, Kubernetes i tryb bezserwerowy
- uczenie maszynowe i inżynieria danych z perspektywy DevOps
- tworzenie i operacjonalizacja projektu uczenia maszynowego
Python: tutaj ważna jest prawdziwa nowoczesność oprogramowania!
Przedmowa 13
1. Podstawy Pythona dla DevOps 21
- Instalowanie i uruchamianie Pythona 21
- Powłoka Pythona 22
- Jupyter Notebooks 23
- Programowanie proceduralne 23
- Zmienne 24
- Podstawowe operacje arytmetyczne 24
- Komentarze 25
- Funkcje wbudowane 25
- Print 25
- Range 26
- Sterowanie przepływem kodu 26
- If-elif-else 26
- Pętle for 28
- Pętle while 29
- Obsługa wyjątków 29
- Obiekty wbudowane 30
- Czym jest obiekt? 30
- Metody i atrybuty obiektu 31
- Sekwencje 31
- Funkcje 42
- Anatomia funkcji 43
- Funkcje jako obiekty 44
- Funkcje anonimowe 45
- Korzystanie z wyrażeń regularnych 45
- Wyszukiwanie 46
- Zbiory znaków 46
- Klasy znaków 47
- Grupy 47
- Grupy nazwane 48
- Znajdź wszystko 48
- Iterator wyszukiwania 48
- Podstawianie 49
- Kompilowanie 49
- Leniwe wartościowanie 50
- Generatory 50
- Generatory składane 51
- Dodatkowe funkcjonalności IPythona 51
- Korzystanie z IPythona do uruchamiania poleceń powłoki Unix 51
- Ćwiczenia 53
2. Automatyzacja zadań dotyczących plików i systemu plików 55
- Odczytywanie i zapisywanie plików 55
- Korzystanie z wyrażeń regularnych do wyszukiwania tekstu 63
- Przetwarzanie dużych plików 65
- Szyfrowanie tekstu 66
- Haszowanie z wykorzystaniem pakietu hashlib 66
- Szyfrowanie z wykorzystaniem biblioteki cryptography 67
- Moduł os 68
- Zarządzanie plikami i katalogami za pomocą modułu os.path 69
- Przeglądanie drzew katalogów za pomocą funkcji os.walk 73
- Ścieżki jako obiekty modułu pathlib 73
3. Praca w wierszu polecenia 75
- Praca w środowisku powłoki 75
- Komunikacja z interpreterem za pomocą modułu sys 75
- Wykonywanie zadań w systemie operacyjnym z wykorzystaniem modułu os 76
- Inicjowanie procesów za pomocą modułu subprocess 77
- Tworzenie narzędzi wiersza polecenia 78
- Atrybut sys.argv 80
- argparse 82
- Pakiet click 85
- Moduł fire 90
- Implementowanie wtyczek 94
- Studium przypadku: Turbodoładowanie Pythona za pomocą narzędzi wiersza polecenia 95
- Kompilator Just-in-Time (JIT) Numba 96
- Korzystanie z GPU w Pythonie za pomocą frameworka CUDA 97
- Uruchamianie w Pythonie kodu na wielu rdzeniach i w wielu wątkach z wykorzystaniem modułu Numba 98
- Klasteryzacja z wykorzystaniem modułu KMeans 100
- Ćwiczenia 101
4. Przydatne narzędzia systemu Linux 103
- Narzędzia dyskowe 104
- Pomiar wydajności 104
- Partycje 106
- Odczytywanie specyficznych informacji o urządzeniu 107
- Narzędzia sieciowe 108
- Tunelowanie SSH 108
- Pomiar wydajności HTTP za pomocą Apache Benchmark (ab) 109
- Testowanie obciążenia za pomocą narzędzia molotov 110
- Narzędzia do badania CPU 112
- Przeglądanie procesów za pomocą htop 113
- Korzystanie z Bash i ZSH 115
- Personalizacja powłoki Pythona 116
- Rekurencyjny globbing 116
- Wyszukiwanie i zamiana z pytaniami o potwierdzenie 117
- Usuwanie tymczasowych plików Pythona 118
- Wyświetlanie listy procesów i jej filtrowanie 118
- Uniksowe znaczniki czasu 119
- Łączenie możliwości Pythona z powłoką Bash i ZSH 120
- Generator losowych haseł 120
- Czy mój moduł istnieje? 121
- Zmiana katalogów na ścieżki do modułów 121
- Konwersja pliku CSV na JSON 122
- Jednowierszowe skrypty w Pythonie 123
- Debugery 123
- Jak szybko działa ten fragment kodu? 124
- strace 125
- Ćwiczenia 127
- Zadanie związane ze studium przypadku 127
5. Zarządzanie pakietami 129
- Dlaczego tworzenie pakietów jest ważne? 130
- Kiedy tworzenie pakietu może być niepotrzebne? 130
- Wytyczne dotyczące tworzenia pakietów 130
- Opisowe wersjonowanie 131
- Rejestr zmian 132
- Wybór strategii 133
- Sposoby tworzenia pakietów 133
- Natywny pakiet Pythona 133
- Pakiety w stylu Debiana 139
- Pakiety RPM 145
- Zarządzanie za pomocą systemd 151
- Procesy długotrwałe 152
- Konfiguracja 152
- Plik modułu systemd 154
- Instalacja modułu 155
- Obsługa logów 156
- Ćwiczenia 158
- Zadanie związane ze studium przypadku 158
6. Continuous Integration i Continuous Deployment 159
- Studium przypadku: konwersja źle utrzymywanej witryny bazującej na WordPressie do Hugo 159
- Konfigurowanie Hugo 160
- Konwersja witryny WordPress na posty Hugo 161
- Utworzenie indeksu Algolia i jego uaktualnienie 163
- Automatyzacja za pomocą Makefile 165
- Instalacja z wykorzystaniem AWS CodePipeline 165
- Studium przypadku: instalacja aplikacji Python App Engine za pomocą mechanizmu Google Cloud Build 166
- Studium przypadku: NFSOPS 173
7. Monitorowanie i logowanie 175
- Kluczowe pojęcia dotyczące budowania niezawodnych systemów 175
- Niezmienne zasady DevOps 176
- Centralne logowanie 176
- Studium przypadku: produkcyjna baza danych zabija dyski twarde 177
- Zbudować czy kupić? 178
- Odporność na błędy 178
- Monitorowanie 180
- Graphite 180
- StatsD 181
- Prometheus 181
- Oprzyrządowanie 185
- Konwencje nazewnictwa 188
- Logowanie 189
- Dlaczego konfigurowanie logowania jest trudne? 189
- basicconfig 189
- Głębsza konfiguracja 190
- Powszechne wzorce 194
- Stos ELK 195
- Logstash 197
- Elasticsearch i Kibana 198
- Ćwiczenia 201
- Zadanie związane ze studium przypadku 202
8. Pytest dla DevOps 203
- Testowanie za pomocą frameworka pytest 203
- Pierwsze kroki z pytest 204
- Testowanie z wykorzystaniem pytest 204
- Różnice w stosunku do unittest 206
- Cechy frameworka pytest 207
- conftest.py 208
- Niezwykła funkcja assert 208
- Parametryzacja 209
- Fikstury 211
- Pierwsze kroki 211
- Fikstury wbudowane 213
- Testowanie infrastruktury 215
- Co to jest walidacja systemowa? 216
- Wprowadzenie do projektu Testinfra 217
- Nawiązywanie połączeń ze zdalnymi węzłami 217
- Funkcje i fikstury specjalne 220
- Przykłady 222
- Testowanie notatników Jupyter Notebooks z wykorzystaniem frameworka pytest 224
- Ćwiczenia 225
- Zadanie związane ze studium przypadku 225
9. Chmura obliczeniowa 227
- Podstawy chmury obliczeniowej 228
- Rodzaje chmur obliczeniowych 230
- Rodzaje usług chmury obliczeniowej 231
- IaaS 231
- MaaS 235
- PaaS 235
- Przetwarzanie bezserwerowe 236
- SaaS 239
- Infrastruktura jako kod 239
- Ciągłe dostawy 240
- Wirtualizacja i kontenery 240
- Wirtualizacja sprzętowa 240
- Sieci SDN 241
- Magazyny SDS 241
- Kontenery 241
- Wyzwania i możliwości przetwarzania rozproszonego 243
- Współbieżność, wydajność i zarządzanie procesami w dobie chmury obliczeniowej 244
- Zarządzanie procesami 245
- Zarządzanie procesami z wykorzystaniem modułu subprocess 245
- Korzystanie z modułu multiprocessing do rozwiązywania problemów 247
- Rozwidlanie procesów za pomocą funkcji pool() 248
- FaaS i tryb bezserwerowy 250
- Wysokowydajny Python z wykorzystaniem pakietu Numba 251
- Korzystanie z kompilatora Just in Time biblioteki Numba 251
- Korzystanie z wysokowydajnych serwerów 252
- Wniosek 252
- Ćwiczenia 253
- Studia przypadków 253
10. Infrastruktura jako kod 255
- Klasyfikacja narzędzi automatyzacji infrastruktury 256
- Dostarczanie ręczne 258
- Automatyczne dostarczanie infrastruktury z wykorzystaniem systemu Terraform 259
- Dostarczanie komory S3 259
- Dostarczanie certyfikatu SSL z usługi AWS ACM 262
- Dostarczanie dystrybucji Amazon CloudFront 263
- Dostarczanie rekordu DNS Route 53 265
- Kopiowanie statycznych plików do usługi S3 267
- Usuwanie wszystkich zasobów AWS dostarczonych przez Terraform 267
- Zautomatyzowane dostarczanie infrastruktury za pomocą systemu Pulumi 267
- Tworzenie nowego projektu Pythona Pulumi dla usług AWS 268
- Tworzenie wartości konfiguracyjnych dla stosu staging 272
- Dostarczanie certyfikatu SSL ACM 273
- Dostarczanie strefy Route 53 i rekordów DNS 273
- Dostarczanie dystrybucji CloudFront 275
- Dostarczanie rekordu DNS Route 53 dla adresu URL witryny 277
- Tworzenie i wdrażanie nowego stosu 277
- Ćwiczenia 279
11. Technologie kontenerowe: Docker i Docker Compose 281
- Czym jest kontener Dockera? 282
- Tworzenie, budowanie, uruchamianie i usuwanie obrazów i kontenerów Dockera 282
- Publikowanie obrazów Dockera w Rejestrze Dockera 285
- Uruchamianie kontenera Dockera z tego samego obrazu na innym hoście 287
- Uruchamianie wielu kontenerów Dockera za pomocą systemu Docker Compose 289
- Przenoszenie usług docker-compose do nowego hosta i systemu operacyjnego 299
- Ćwiczenia 302
12. Orkiestracja kontenerów: Kubernetes 305
- Przegląd pojęć związanych z systemem Kubernetes 306
- Korzystanie z systemu Kompose do tworzenia manifestów Kubernetesa na podstawie pliku docker-compose.yaml 307
- Instalacja manifestów Kubernetesa w lokalnym klastrze Kubernetesa z wykorzystaniem minikube 308
- Uruchomienie klastra GKE Kubernetes w GCP za pomocą Pulumi 322
- Instalacja przykładowej aplikacji Flask do GKE 324
- Instalacja wykresów Helm Prometheus i Grafana 330
- Niszczenie klastra GKE 334
- Ćwiczenia 335
13. Technologie bezserwerowe 337
- Wdrażanie tej samej funkcji Pythona do chmur dostawców z Wielkiej Trójki 339
- Instalacja frameworka Serverless 340
- Wdrażanie funkcji Pythona w usłudze AWS Lambda 340
- Wdrażanie funkcji Pythona na platformie Google Cloud Functions 342
- Wdrażanie funkcji Pythona w usłudze AWS Lambda 348
- Wdrażanie funkcji Pythona do platform FaaS działających w trybie self-hosted 351
- Wdrażanie funkcji Pythona do usługi OpenFaaS 352
- Konfigurowanie tabeli DynamoDB, funkcji Lambda i metod API Gateway za pomocą AWS CDK 358
- Ćwiczenia 376
14. MLOps i inżynieria uczenia maszynowego 377
- Czym jest uczenie maszynowe? 377
- Nadzorowane uczenie maszynowe 377
- Modelowanie 380
- Ekosystem uczenia maszynowego w Pythonie 382
- Uczenie głębokie z wykorzystaniem frameworka PyTorch 383
- Platformy uczenia maszynowego w chmurze 386
- Model dojrzałości uczenia maszynowego 387
- Najważniejsza terminologia uczenia maszynowego 388
- Poziom 1. Formułowanie, identyfikowanie zakresu i definiowanie problemu 389
- Poziom 2. Ciągłe dostawy danych 389
- Poziom 3. Ciągłe dostawy oczyszczonych danych 391
- Poziom 4. Ciągłe dostawy eksploracyjnych analiz danych 392
- Poziom 5. Ciągłe dostarczania tradycyjnych narzędzi ML i AutoML 393
- Poziom 6. Operacyjna pętla sprzężenia zwrotnego narzędzi ML 393
- Model Sklearn Flask z wykorzystaniem systemów Kubernetes i Docker 394
- Sklearn Flask z wykorzystaniem Kubernetesa i Dockera 397
- EDA 398
- Modelowanie 399
- Dostrajanie skalowanego algorytmu GBM 399
- Dopasowywanie modelu 400
- Ocena 401
- adhoc_predict 401
- Przepływ pracy JSON 402
- Skalowanie danych wejściowych 402
- adhoc_predict z modułu Pickle 403
- Skalowanie danych wejściowych 404
- Ćwiczenia 404
- Zadanie związane ze studium przypadku 405
- Pytania i zadania kontrolne 405
15. Inżynieria danych 407
- Small data 408
- Obsługa plików typu small data 408
- Zapis do pliku 409
- Odczyt z pliku 409
- Potok generatora używany w celu czytania i przetwarzania wierszy 409
- Korzystanie z formatu YAML 410
- Big Data 411
- Narzędzia Big Data, komponenty i platformy 413
- Źródła danych 413
- Systemy plików 414
- Przechowywanie danych 415
- Pobieranie strumieni danych w czasie rzeczywistym 416
- Studium przypadku: budowanie własnego potoku danych 417
- Inżynieria danych w trybie bezserwerowym 418
- Korzystanie z usługi AWS Lambda z wykorzystaniem zdarzeń CloudWatch 418
- Logowanie z wykorzystaniem usług Amazon CloudWatch i AWS Lambda 419
- Wykorzystanie usługi AWS Lambda w celu zapełniania kolejki w usłudze Amazon Simple Queue Service 420
- Konfiguracja mechanizmu wyzwalającego zdarzenie CloudWatch 421
- Tworzenie funkcji Lambda sterowanych zdarzeniami 422
- Odczyt zdarzeń Amazon SQS z funkcji AWS Lambda 422
- Wnioski 429
- Ćwiczenia 429
- Zadanie związane ze studium przypadku 430
16. Historie wojenne DevOps i wywiady 431
- Studio filmowe nie może produkować filmów 432
- Studio gier nie może opublikować gry 434
- Uruchomienie skryptów Pythona zajmuje 60 sekund 435
- Gaszenie pożarów za pomocą pamięci podręcznej i inteligentnej instrumentacji 437
- Automatyzacja zabierze Ci pracę! 437
- Antywzorce DevOps 439
- Brak zautomatyzowanego serwera budowania 439
- "Latanie po omacku" 439
- Trudności w koordynacji jako stan ciągły 439
- Brak pracy zespołowej 441
- Wywiady 445
- Glenn Solomon 445
- Andrew Nguyen 446
- Gabriella Roman 448
- Rigoberto Roche 449
- Jonathan LaCour 450
- Ville Tuulos 452
- Joseph Reis 454
- Teijo Holzer 455
- Matt Harrison 457
- Michael Foord 458
- Zalecenia 461
- Ćwiczenia 462
- Wyzwania 462
- Projekt końcowy 462
- Назва: Python dla DevOps. Naucz się bezlitośnie skutecznej automatyzacji
- Автор: Noah Gift, Kennedy Behrman, Alfredo Deza, Grig Gheorghiu
- Оригінальна назва: Python for DevOps: Learn Ruthlessly Effective Automation
- Переклад: Radosław Meryk
- ISBN: 978-83-283-6831-6, 9788328368316
- Дата видання: 2020-11-24
- Формат: Eлектронна книга
- Ідентифікатор видання: pytdev
- Видавець: Helion