Categories
Ebooks
-
Business and economy
- Bitcoin
- Businesswoman
- Coaching
- Controlling
- E-business
- Economy
- Finances
- Stocks and investments
- Personal competence
- Computer in the office
- Communication and negotiation
- Small company
- Marketing
- Motivation
- Multimedia trainings
- Real estate
- Persuasion and NLP
- Taxes
- Social policy
- Guides
- Presentations
- Leadership
- Public Relation
- Reports, analyses
- Secret
- Social Media
- Sales
- Start-up
- Your career
- Management
- Project management
- Human Resources
-
For children
-
For youth
-
Education
-
Encyclopedias, dictionaries
-
E-press
- Architektura i wnętrza
- Biznes i Ekonomia
- Home and garden
- E-business
- Finances
- Personal finance
- Business
- Photography
- Computer science
- HR & Payroll
- Computers, Excel
- Accounts
- Culture and literature
- Scientific and academic
- Environmental protection
- Opinion-forming
- Education
- Taxes
- Travelling
- Psychology
- Religion
- Agriculture
- Book and press market
- Transport and Spedition
- Healthand beauty
-
History
-
Computer science
- Office applications
- Data bases
- Bioinformatics
- IT business
- CAD/CAM
- Digital Lifestyle
- DTP
- Electronics
- Digital photography
- Computer graphics
- Games
- Hacking
- Hardware
- IT w ekonomii
- Scientific software package
- School textbooks
- Computer basics
- Programming
- Mobile programming
- Internet servers
- Computer networks
- Start-up
- Operational systems
- Artificial intelligence
- Technology for children
- Webmastering
-
Other
-
Foreign languages
-
Culture and art
-
School reading books
-
Literature
- Antology
- Ballade
- Biographies and autobiographies
- For adults
- Dramas
- Diaries, memoirs, letters
- Epic, epopee
- Essay
- Fantasy and science fiction
- Feuilletons
- Work of fiction
- Humour and satire
- Other
- Classical
- Crime fiction
- Non-fiction
- Fiction
- Mity i legendy
- Nobelists
- Novellas
- Moral
- Okultyzm i magia
- Short stories
- Memoirs
- Travelling
- Narrative poetry
- Poetry
- Politics
- Popular science
- Novel
- Historical novel
- Prose
- Adventure
- Journalism, publicism
- Reportage novels
- Romans i literatura obyczajowa
- Sensational
- Thriller, Horror
- Interviews and memoirs
-
Natural sciences
-
Social sciences
-
School textbooks
-
Popular science and academic
- Archeology
- Bibliotekoznawstwo
- Cinema studies
- Philology
- Polish philology
- Philosophy
- Finanse i bankowość
- Geography
- Economy
- Trade. World economy
- History and archeology
- History of art and architecture
- Cultural studies
- Linguistics
- Literary studies
- Logistics
- Maths
- Medicine
- Humanities
- Pedagogy
- Educational aids
- Popular science
- Other
- Psychology
- Sociology
- Theatre studies
- Theology
- Economic theories and teachings
- Transport i spedycja
- Physical education
- Zarządzanie i marketing
-
Guides
-
Game guides
-
Professional and specialist guides
-
Law
- Health and Safety
- History
- Road Code. Driving license
- Law studies
- Healthcare
- General. Compendium of knowledge
- Academic textbooks
- Other
- Construction and local law
- Civil law
- Financial law
- Economic law
- Economic and trade law
- Criminal law
- Criminal law. Criminal offenses. Criminology
- International law
- International law
- Health care law
- Educational law
- Tax law
- Labor and social security law
- Public, constitutional and administrative law
- Family and Guardianship Code
- agricultural law
- Social law, labour law
- European Union law
- Industry
- Agricultural and environmental
- Dictionaries and encyclopedia
- Public procurement
- Management
-
Tourist guides and travel
- Africa
- Albums
- Southern America
- North and Central America
- Australia, New Zealand, Oceania
- Austria
- Asia
- Balkans
- Middle East
- Bulgary
- China
- Croatia
- The Czech Republic
- Denmark
- Egipt
- Estonia
- Europe
- France
- Mountains
- Greece
- Spain
- Holand
- Iceland
- Lithuania
- Latvia
- Mapy, Plany miast, Atlasy
- Mini travel guides
- Germany
- Norway
- Active travelling
- Poland
- Portugal
- Other
- Russia
- Romania
- Slovakia
- Slovenia
- Switzerland
- Sweden
- World
- Turkey
- Ukraine
- Hungary
- Great Britain
- Italy
-
Psychology
- Philosophy of life
- Kompetencje psychospołeczne
- Interpersonal communication
- Mindfulness
- General
- Persuasion and NLP
- Academic psychology
- Psychology of soul and mind
- Work psychology
- Relacje i związki
- Parenting and children psychology
- Problem solving
- Intellectual growth
- Secret
- Sexapeal
- Seduction
- Appearance and image
- Philosophy of life
-
Religion
-
Sport, fitness, diets
-
Technology and mechanics
Audiobooks
-
Business and economy
- Bitcoin
- Businesswoman
- Coaching
- Controlling
- E-business
- Economy
- Finances
- Stocks and investments
- Personal competence
- Communication and negotiation
- Small company
- Marketing
- Motivation
- Real estate
- Persuasion and NLP
- Taxes
- Guides
- Presentations
- Leadership
- Public Relation
- Secret
- Social Media
- Sales
- Start-up
- Your career
- Management
- Project management
- Human Resources
-
For children
-
For youth
-
Education
-
Encyclopedias, dictionaries
-
History
-
Computer science
-
Other
-
Foreign languages
-
Culture and art
-
School reading books
-
Literature
- Antology
- Ballade
- Biographies and autobiographies
- For adults
- Dramas
- Diaries, memoirs, letters
- Epic, epopee
- Essay
- Fantasy and science fiction
- Feuilletons
- Work of fiction
- Humour and satire
- Other
- Classical
- Crime fiction
- Non-fiction
- Fiction
- Mity i legendy
- Nobelists
- Novellas
- Moral
- Okultyzm i magia
- Short stories
- Memoirs
- Travelling
- Poetry
- Politics
- Popular science
- Novel
- Historical novel
- Prose
- Adventure
- Journalism, publicism
- Reportage novels
- Romans i literatura obyczajowa
- Sensational
- Thriller, Horror
- Interviews and memoirs
-
Natural sciences
-
Social sciences
-
Popular science and academic
-
Guides
-
Professional and specialist guides
-
Law
-
Tourist guides and travel
-
Psychology
- Philosophy of life
- Interpersonal communication
- Mindfulness
- General
- Persuasion and NLP
- Academic psychology
- Psychology of soul and mind
- Work psychology
- Relacje i związki
- Parenting and children psychology
- Problem solving
- Intellectual growth
- Secret
- Sexapeal
- Seduction
- Appearance and image
- Philosophy of life
-
Religion
-
Sport, fitness, diets
-
Technology and mechanics
Videocourses
-
Data bases
-
Big Data
-
Biznes, ekonomia i marketing
-
Cybersecurity
-
Data Science
-
DevOps
-
For children
-
Electronics
-
Graphics/Video/CAX
-
Games
-
Microsoft Office
-
Development tools
-
Programming
-
Personal growth
-
Computer networks
-
Operational systems
-
Software testing
-
Mobile devices
-
UX/UI
-
Web development
-
Management
Podcasts
- Ebooks
- Big data
- Data analysis
- Spark. Błyskawiczna analiza danych. Wydanie II
E-book details
Spark. Błyskawiczna analiza danych. Wydanie II
Jules S. Damji, Brooke Wenig, Tathagata Das, Denny Lee
Apache Spark jest oprogramowaniem open source, przeznaczonym do klastrowego przetwarzania danych dostarczanych w różnych formatach. Pozwala na uzyskanie niespotykanej wydajności, umożliwia też pracę w trybie wsadowym i strumieniowym. Framework ten jest również świetnie przygotowany do uruchamiania złożonych aplikacji, włączając w to algorytmy uczenia maszynowego czy analizy predykcyjnej. To wszystko sprawia, że Apache Spark stanowi znakomity wybór dla programistów zajmujących się big data, a także eksploracją i analizą danych.
To książka przeznaczona dla inżynierów danych i programistów, którzy chcą za pomocą Sparka przeprowadzać skomplikowane analizy danych i korzystać z algorytmów uczenia maszynowego, nawet jeśli te dane pochodzą z różnych źródeł. Wyjaśniono tu, jak dzięki Apache Spark można odczytywać i ujednolicać duże zbiory informacji, aby powstawały niezawodne jeziora danych, w jaki sposób wykonuje się interaktywne zapytania SQL, a także jak tworzy się potoki przy użyciu MLlib i wdraża modele za pomocą biblioteki MLflow. Omówiono również współdziałanie aplikacji Sparka z jego rozproszonymi komponentami i tryby jej wdrażania w poszczególnych środowiskach.
W książce:
- API strukturalne dla Pythona, SQL, Scali i Javy
- operacje Sparka i silnika SQL
- konfiguracje Sparka i interfejs Spark UI
- nawiązywanie połączeń ze źródłami danych: JSON, Parquet, CSV, Avro, ORC, Hive, S3 i Kafka
- operacje analityczne na danych wsadowych i strumieniowanych
- niezawodne potoki danych i potoki uczenia maszynowego
Spark: twórz skalowalne i niezawodne aplikacje big data!
Przedmowa
Wprowadzenie
1. Wprowadzenie do Apache Spark - ujednolicony silnik analityczny
- Geneza Sparka
- Big data i przetwarzanie rozproszone w Google
- Hadoop w Yahoo!
- Wczesne lata Sparka w AMPLab
- Czym jest Apache Spark?
- Szybkość
- Łatwość użycia
- Modułowość
- Rozszerzalność
- Ujednolicona analityka
- Komponenty Apache Spark tworzą ujednolicony stos
- Spark MLlib
- Wykonywanie rozproszone w Apache Spark
- Z punktu widzenia programisty
- Kto używa Sparka i w jakim celu?
- Popularność w społeczności i dalsza ekspansja
2. Pobranie Apache Spark i rozpoczęcie pracy
- Krok 1. - pobranie Apache Spark
- Pliki i katalogi Sparka
- Krok 2. - używanie powłoki Scali lub PySparka
- Używanie komputera lokalnego
- Krok 3. - poznanie koncepcji aplikacji Apache Spark
- Aplikacja Sparka i SparkSession
- Zlecenia Sparka
- Etapy Sparka
- Zadania Sparka
- Transformacje, akcje i późna ocena
- Transformacje wąskie i szerokie
- Spark UI
- Pierwsza niezależna aplikacja
- Zliczanie cukierków M&M's
- Tworzenie niezależnych aplikacji w Scali
- Podsumowanie
3. API strukturalne Apache Spark
- Spark - co się kryje za akronimem RDD?
- Strukturyzacja Sparka
- Kluczowe zalety i wartość struktury
- API DataFrame
- Podstawowe typy danych Sparka
- Strukturalne i złożone typy danych Sparka
- Schemat i tworzenie egzemplarza DataFrame
- Kolumny i wyrażenia
- Rekord
- Najczęściej przeprowadzane operacje z użyciem DataFrame
- Przykład pełnego rozwiązania wykorzystującego DataFrame
- API Dataset
- Obiekty typowane i nietypowane oraz ogólne rekordy
- Tworzenie egzemplarza Dataset
- Operacje na egzemplarzu Dataset
- Przykład pełnego rozwiązania wykorzystującego Dataset
- Egzemplarz DataFrame kontra Dataset
- Kiedy używać RDD?
- Silnik Spark SQL
- Optymalizator Catalyst
- Podsumowanie
4. Spark SQL i DataFrame - wprowadzenie do wbudowanych źródeł danych
- Używanie Spark SQL w aplikacji Sparka
- Przykłady podstawowych zapytań
- Widoki i tabele SQL
- Tabele zarządzane kontra tabele niezarządzane
- Tworzenie baz danych i tabel SQL
- Tworzenie widoku
- Wyświetlanie metadanych
- Buforowanie tabel SQL
- Wczytywanie zawartości tabeli do egzemplarza DataFrame
- Źródła danych dla egzemplarzy DataFrame i tabel SQL
- DataFrameReader
- DataFrameWriter
- Parquet
- JSON
- CSV
- Avro
- ORC
- Obrazy
- Pliki binarne
- Podsumowanie
5. Spark SQL i DataFrame - współpraca z zewnętrznymi źródłami danych
- Spark SQL i Apache Hive
- Funkcje zdefiniowane przez użytkownika
- Wykonywanie zapytań z użyciem powłoki Spark SQL, Beeline i Tableau
- Używanie powłoki Spark SQL
- Praca z narzędziem Beeline
- Praca z Tableau
- Zewnętrzne źródła danych
- Bazy danych SQL i JDBC
- PostgreSQL
- MySQL
- Azure Cosmos DB
- MS SQL Server
- Inne zewnętrzne źródła danych
- Funkcje wyższego rzędu w egzemplarzach DataFrame i silniku Spark SQL
- Opcja 1. - konwersja struktury
- Opcja 2. - funkcja zdefiniowana przez użytkownika
- Wbudowane funkcje dla złożonych typów danych
- Funkcje wyższego rzędu
- Najczęściej wykonywane operacje w DataFrame i Spark SQL
- Suma
- Złączenie
- Okno czasowe
- Modyfikacje
- Podsumowanie
6. Spark SQL i Dataset
- Pojedyncze API dla Javy i Scali
- Klasy case Scali i JavaBean dla egzemplarzy Dataset
- Praca z egzemplarzem Dataset
- Tworzenie przykładowych danych
- Transformacja przykładowych danych
- Zarządzanie pamięcią podczas pracy z egzemplarzami Dataset i DataFrame
- Kodeki egzemplarza Dataset
- Wewnętrzny format Sparka kontra format obiektu Javy
- Serializacja i deserializacja
- Koszt związany z używaniem egzemplarza Dataset
- Strategie pozwalające obniżyć koszty
- Podsumowanie
7. Optymalizacja i dostrajanie aplikacji Sparka
- Optymalizacja i dostrajanie Sparka w celu zapewnienia efektywności działania
- Wyświetlanie i definiowanie konfiguracji Apache Spark
- Skalowanie Sparka pod kątem ogromnych obciążeń
- Buforowanie i trwałe przechowywanie danych
- DataFrame.cache()
- DataFrame.persist()
- Kiedy buforować i trwale przechowywać dane?
- Kiedy nie buforować i nie przechowywać trwale danych?
- Rodzina złączeń w Sparku
- Złączenie BHJ
- Złączenie SMJ
- Spark UI
- Karty narzędzia Spark UI
- Podsumowanie
8. Strumieniowanie strukturalne
- Ewolucja silnika przetwarzania strumieni w Apache Spark
- Przetwarzanie strumieniowe mikropartii
- Cechy mechanizmu Spark Streaming (DStreams)
- Filozofia strumieniowania strukturalnego
- Model programowania strumieniowania strukturalnego
- Podstawy zapytania strumieniowania strukturalnego
- Pięć kroków do zdefiniowania zapytania strumieniowego
- Pod maską aktywnego zapytania strumieniowanego
- Odzyskiwanie danych po awarii i gwarancja "dokładnie raz"
- Monitorowanie aktywnego zapytania
- Źródło i ujście strumieniowanych danych
- Pliki
- Apache Kafka
- Niestandardowe źródła strumieni i ujść danych
- Transformacje danych
- Wykonywanie przyrostowe i stan strumieniowania
- Transformacje bezstanowe
- Transformacje stanowe
- Agregacje strumieniowania
- Agregacja nieuwzględniająca czasu
- Agregacje z oknami czasowymi na podstawie zdarzeń
- Złączenie strumieniowane
- Złączenie strumienia i egzemplarza statycznego
- Złączenia między egzemplarzami strumieniowanymi
- Dowolne operacje związane ze stanem
- Modelowanie za pomocą mapGroupsWithState() dowolnych operacji stanu
- Stosowanie limitów czasu do zarządzania nieaktywnymi grupami
- Generalizacja z użyciem wywołania flatMapGroupsWithState()
- Dostrajanie wydajności działania
- Podsumowanie
9. Tworzenie niezawodnych jezior danych za pomocą Apache Spark
- Waga optymalnego rozwiązania w zakresie pamięci masowej
- Bazy danych
- Krótkie wprowadzenie do SQL
- Odczytywanie i zapisywanie informacji w bazie danych za pomocą Apache Spark
- Ograniczenia baz danych
- Jezioro danych
- Krótkie wprowadzenie do jezior danych
- Odczytywanie i zapisywanie danych jeziora danych za pomocą Apache Spark
- Ograniczenia jezior danych
- Lakehouse - następny krok w ewolucji rozwiązań pamięci masowej
- Apache Hudi
- Apache Iceberg
- Delta Lake
- Tworzenie repozytorium danych za pomocą Apache Spark i Delta Lake
- Konfiguracja Apache Spark i Delta Lake
- Wczytywanie danych do tabeli Delta Lake
- Wczytywanie strumieni danych do tabeli Delta Lake
- Zarządzanie schematem podczas zapisu w celu zapobiegania uszkodzeniu danych
- Ewolucja schematu w celu dostosowania go do zmieniających się danych
- Transformacja istniejących danych
- Audyt zmian danych przeprowadzany za pomocą historii operacji
- Wykonywanie zapytań do poprzednich migawek tabeli dzięki funkcjonalności podróży w czasie
- Podsumowanie
10. Uczenie maszynowe z użyciem biblioteki MLlib
- Czym jest uczenie maszynowe?
- Nadzorowane uczenie maszynowe
- Nienadzorowane uczenie maszynowe
- Dlaczego Spark dla uczenia maszynowego?
- Projektowanie potoków uczenia maszynowego
- Wczytywanie i przygotowywanie danych
- Tworzenie zbiorów danych - testowego i treningowego
- Przygotowywanie cech za pomocą transformerów
- Regresja liniowa
- Stosowanie estymatorów do tworzenia modeli
- Tworzenie potoku
- Ocena modelu
- Zapisywanie i wczytywanie modeli
- Dostrajanie hiperparametru
- Modele oparte na drzewach
- k-krotny sprawdzian krzyżowy
- Optymalizacja potoku
- Podsumowanie
11. Stosowanie Apache Spark do wdrażania potoków uczenia maszynowego oraz ich skalowania i zarządzania nimi
- Zarządzanie modelem
- MLflow
- Opcje wdrażania modelu za pomocą MLlib
- Wsadowe
- Strumieniowane
- Wzorce eksportu modelu dla rozwiązania niemalże w czasie rzeczywistym
- Wykorzystanie Sparka do pracy z modelami, które nie zostały utworzone za pomocą MLlib
- Zdefiniowane przez użytkownika funkcje pandas
- Spark i rozproszone dostrajanie hiperparametru
- Podsumowanie
12. Epilog - Apache Spark 3.0
- Spark Core i Spark SQL
- Dynamiczne oczyszczanie partycji
- Adaptacyjne wykonywanie zapytań
- Podpowiedzi dotyczące złączeń SQL
- API wtyczek katalogu i DataSourceV2
- Planowanie z użyciem akceleratorów
- Strumieniowanie strukturalne
- PySpark, zdefiniowane przez użytkownika funkcje pandas i API funkcji pandas
- Usprawnione zdefiniowane przez użytkownika funkcje pandas zapewniające obsługę podpowiedzi typów w Pythonie
- Obsługa iteratora w zdefiniowanych przez użytkownika funkcjach pandas
- Nowe API funkcji pandas
- Zmieniona funkcjonalność
- Obsługiwane języki
- Zmiany w API DataFrame i Dataset
- Polecenia SQL EXPLAIN i DataFrame
- Podsumowanie
- Title: Spark. Błyskawiczna analiza danych. Wydanie II
- Author: Jules S. Damji, Brooke Wenig, Tathagata Das, Denny Lee
- Original title: Learning Spark: Lightning-Fast Data Analytics, 2nd Edition
- Translation: Robert Górczyński
- ISBN: 978-83-283-9915-0, 9788328399150
- Date of issue: 2023-02-07
- Format: Ebook
- Item ID: sparb2
- Publisher: Helion