Kategorie
Ebooki
-
Biznes i ekonomia
- Bitcoin
- Bizneswoman
- Coaching
- Controlling
- E-biznes
- Ekonomia
- Finanse
- Giełda i inwestycje
- Kompetencje osobiste
- Komputer w biurze
- Komunikacja i negocjacje
- Mała firma
- Marketing
- Motywacja
- Multimedialne szkolenia
- Nieruchomości
- Perswazja i NLP
- Podatki
- Polityka społeczna
- Poradniki
- Prezentacje
- Przywództwo
- Public Relation
- Raporty, analizy
- Sekret
- Social Media
- Sprzedaż
- Start-up
- Twoja kariera
- Zarządzanie
- Zarządzanie projektami
- Zasoby ludzkie (HR)
-
Dla dzieci
-
Dla młodzieży
-
Edukacja
-
Encyklopedie, słowniki
-
E-prasa
- Architektura i wnętrza
- BHP
- Biznes i Ekonomia
- Dom i ogród
- E-Biznes
- Finanse
- Finanse osobiste
- Firma
- Fotografia
- Informatyka
- Kadry i płace
- Komputery, Excel
- Księgowość
- Kultura i literatura
- Naukowe i akademickie
- Ochrona środowiska
- Opiniotwórcze
- Oświata
- Podatki
- Podróże
- Psychologia
- Religia
- Rolnictwo
- Rynek książki i prasy
- Transport i Spedycja
- Zdrowie i uroda
-
Historia
-
Informatyka
- Aplikacje biurowe
- Bazy danych
- Bioinformatyka
- Biznes IT
- CAD/CAM
- Digital Lifestyle
- DTP
- Elektronika
- Fotografia cyfrowa
- Grafika komputerowa
- Gry
- Hacking
- Hardware
- IT w ekonomii
- Pakiety naukowe
- Podręczniki szkolne
- Podstawy komputera
- Programowanie
- Programowanie mobilne
- Serwery internetowe
- Sieci komputerowe
- Start-up
- Systemy operacyjne
- Sztuczna inteligencja
- Technologia dla dzieci
- Webmasterstwo
-
Inne
-
Języki obce
-
Kultura i sztuka
-
Lektury szkolne
-
Literatura
- Antologie
- Ballada
- Biografie i autobiografie
- Dla dorosłych
- Dramat
- Dzienniki, pamiętniki, listy
- Epos, epopeja
- Esej
- Fantastyka i science-fiction
- Felietony
- Fikcja
- Humor, satyra
- Inne
- Klasyczna
- Kryminał
- Literatura faktu
- Literatura piękna
- Mity i legendy
- Nobliści
- Nowele
- Obyczajowa
- Okultyzm i magia
- Opowiadania
- Pamiętniki
- Podróże
- Poemat
- Poezja
- Polityka
- Popularnonaukowa
- Powieść
- Powieść historyczna
- Proza
- Przygodowa
- Publicystyka
- Reportaż
- Romans i literatura obyczajowa
- Sensacja
- Thriller, Horror
- Wywiady i wspomnienia
-
Nauki przyrodnicze
-
Nauki społeczne
-
Podręczniki szkolne
-
Popularnonaukowe i akademickie
- Archeologia
- Bibliotekoznawstwo
- Filmoznawstwo
- Filologia
- Filologia polska
- Filozofia
- Finanse i bankowość
- Geografia
- Gospodarka
- Handel. Gospodarka światowa
- Historia i archeologia
- Historia sztuki i architektury
- Kulturoznawstwo
- Lingwistyka
- Literaturoznawstwo
- Logistyka
- Matematyka
- Medycyna
- Nauki humanistyczne
- Pedagogika
- Pomoce naukowe
- Popularnonaukowa
- Pozostałe
- Psychologia
- Socjologia
- Teatrologia
- Teologia
- Teorie i nauki ekonomiczne
- Transport i spedycja
- Wychowanie fizyczne
- Zarządzanie i marketing
-
Poradniki
-
Poradniki do gier
-
Poradniki zawodowe i specjalistyczne
-
Prawo
- BHP
- Historia
- Kodeks drogowy. Prawo jazdy
- Nauki prawne
- Ochrona zdrowia
- Ogólne, kompendium wiedzy
- Podręczniki akademickie
- Pozostałe
- Prawo budowlane i lokalowe
- Prawo cywilne
- Prawo finansowe
- Prawo gospodarcze
- Prawo gospodarcze i handlowe
- Prawo karne
- Prawo karne. Przestępstwa karne. Kryminologia
- Prawo międzynarodowe
- Prawo międzynarodowe i zagraniczne
- Prawo ochrony zdrowia
- Prawo oświatowe
- Prawo podatkowe
- Prawo pracy i ubezpieczeń społecznych
- Prawo publiczne, konstytucyjne i administracyjne
- Prawo rodzinne i opiekuńcze
- Prawo rolne
- Prawo socjalne, prawo pracy
- Prawo Unii Europejskiej
- Przemysł
- Rolne i ochrona środowiska
- Słowniki i encyklopedie
- Zamówienia publiczne
- Zarządzanie
-
Przewodniki i podróże
- Afryka
- Albumy
- Ameryka Południowa
- Ameryka Środkowa i Północna
- Australia, Nowa Zelandia, Oceania
- Austria
- Azja
- Bałkany
- Bliski Wschód
- Bułgaria
- Chiny
- Chorwacja
- Czechy
- Dania
- Egipt
- Estonia
- Europa
- Francja
- Góry
- Grecja
- Hiszpania
- Holandia
- Islandia
- Litwa
- Łotwa
- Mapy, Plany miast, Atlasy
- Miniprzewodniki
- Niemcy
- Norwegia
- Podróże aktywne
- Polska
- Portugalia
- Pozostałe
- Przewodniki po hotelach i restauracjach
- Rosja
- Rumunia
- Słowacja
- Słowenia
- Szwajcaria
- Szwecja
- Świat
- Turcja
- Ukraina
- Węgry
- Wielka Brytania
- Włochy
-
Psychologia
- Filozofie życiowe
- Kompetencje psychospołeczne
- Komunikacja międzyludzka
- Mindfulness
- Ogólne
- Perswazja i NLP
- Psychologia akademicka
- Psychologia duszy i umysłu
- Psychologia pracy
- Relacje i związki
- Rodzicielstwo i psychologia dziecka
- Rozwiązywanie problemów
- Rozwój intelektualny
- Sekret
- Seksualność
- Uwodzenie
- Wygląd i wizerunek
- Życiowe filozofie
-
Religia
-
Sport, fitness, diety
-
Technika i mechanika
Audiobooki
-
Biznes i ekonomia
- Bitcoin
- Bizneswoman
- Coaching
- Controlling
- E-biznes
- Ekonomia
- Finanse
- Giełda i inwestycje
- Kompetencje osobiste
- Komunikacja i negocjacje
- Mała firma
- Marketing
- Motywacja
- Nieruchomości
- Perswazja i NLP
- Podatki
- Poradniki
- Prezentacje
- Przywództwo
- Public Relation
- Sekret
- Social Media
- Sprzedaż
- Start-up
- Twoja kariera
- Zarządzanie
- Zarządzanie projektami
- Zasoby ludzkie (HR)
-
Dla dzieci
-
Dla młodzieży
-
Edukacja
-
Encyklopedie, słowniki
-
Historia
-
Informatyka
-
Inne
-
Języki obce
-
Kultura i sztuka
-
Lektury szkolne
-
Literatura
- Antologie
- Ballada
- Biografie i autobiografie
- Dla dorosłych
- Dramat
- Dzienniki, pamiętniki, listy
- Epos, epopeja
- Esej
- Fantastyka i science-fiction
- Felietony
- Fikcja
- Humor, satyra
- Inne
- Klasyczna
- Kryminał
- Literatura faktu
- Literatura piękna
- Mity i legendy
- Nobliści
- Nowele
- Obyczajowa
- Okultyzm i magia
- Opowiadania
- Pamiętniki
- Podróże
- Poezja
- Polityka
- Popularnonaukowa
- Powieść
- Powieść historyczna
- Proza
- Przygodowa
- Publicystyka
- Reportaż
- Romans i literatura obyczajowa
- Sensacja
- Thriller, Horror
- Wywiady i wspomnienia
-
Nauki przyrodnicze
-
Nauki społeczne
-
Popularnonaukowe i akademickie
-
Poradniki
-
Poradniki zawodowe i specjalistyczne
-
Prawo
-
Przewodniki i podróże
-
Psychologia
- Filozofie życiowe
- Komunikacja międzyludzka
- Mindfulness
- Ogólne
- Perswazja i NLP
- Psychologia akademicka
- Psychologia duszy i umysłu
- Psychologia pracy
- Relacje i związki
- Rodzicielstwo i psychologia dziecka
- Rozwiązywanie problemów
- Rozwój intelektualny
- Sekret
- Seksualność
- Uwodzenie
- Wygląd i wizerunek
- Życiowe filozofie
-
Religia
-
Sport, fitness, diety
-
Technika i mechanika
Kursy video
-
Bazy danych
-
Big Data
-
Biznes, ekonomia i marketing
-
Cyberbezpieczeństwo
-
Data Science
-
DevOps
-
Dla dzieci
-
Elektronika
-
Grafika/Wideo/CAX
-
Gry
-
Microsoft Office
-
Narzędzia programistyczne
-
Programowanie
-
Rozwój osobisty
-
Sieci komputerowe
-
Systemy operacyjne
-
Testowanie oprogramowania
-
Urządzenia mobilne
-
UX/UI
-
Web development
-
Zarządzanie
Podcasty
- Ebooki
- Elektronika
- Arduino
- TinyML. Wykorzystanie TensorFlow Lite do uczenia maszynowego na Arduino i innych mikrokontrolerach
Szczegóły ebooka
TinyML. Wykorzystanie TensorFlow Lite do uczenia maszynowego na Arduino i innych mikrokontrolerach
Pete Warden, Daniel Situnayake
Może się wydawać, że profesjonalne systemy uczenia maszynowego wymagają sporych zasobów mocy obliczeniowej i energii. Okazuje się, że niekoniecznie: można tworzyć zaawansowane, oparte na sieciach neuronowych aplikacje, które doskonale poradzą sobie bez potężnych procesorów. Owszem, praca na mikrokontrolerach podobnych do Arduino lub systemach wbudowanych wymaga pewnego przygotowania i odpowiedniego podejścia, jest to jednak fascynujący sposób na wykorzystanie niewielkich urządzeń o niskim zapotrzebowaniu na energię do tworzenia zdumiewających projektów.
Ta książka jest przystępnym wprowadzeniem do skomplikowanego świata, w którym za pomocą techniki TinyML wdraża się głębokie uczenie maszynowe w systemach wbudowanych. Nie musisz mieć żadnego doświadczenia z zakresu uczenia maszynowego czy pracy z mikrokontrolerami. W książce wyjaśniono, jak można trenować modele na tyle małe, by mogły działać w każdym środowisku - również Arduino. Dokładnie opisano sposoby użycia techniki TinyML w tworzeniu systemów wbudowanych opartych na zastosowaniu ucze nia maszynowego. Zaprezentowano też kilka ciekawych projektów, na przykład dotyczący budowy urządzenia rozpoznającego mowę, magicznej różdżki reagującej na gesty, a także rozszerzenia możliwości kamery o wykrywanie ludzi.
W książce między innymi:
- praca z Arduino i innymi mikrokontrolerami o niskim poborze mocy
- podstawy uczenia maszynowego, budowy i treningu modeli
- TensorFlow Lite i zestaw narzędzi Google dla TinyML
- bezpieczeństwo i ochrona prywatności w aplikacji
- optymalizacja modelu
- tworzenie modeli do interpretacji różnego rodzaju danych
Ograniczone zasoby? Poznaj TinyML!
- Wstęp
- Konwencje typograficzne przyjęte w tej książce
- Korzystanie z przykładowych kodów
- Podziękowania
- Rozdział 1. Wprowadzenie
- Urządzenia z systemem wbudowanym
- Ciągły rozwój
- Rozdział 2. Informacje wstępne
- Do kogo skierowana jest ta książka?
- Jaki sprzęt będzie Ci potrzebny?
- Jakie oprogramowanie będzie Ci potrzebne?
- Czego nauczysz się dzięki tej książce?
- Rozdział 3. Wprowadzenie do uczenia maszynowego
- Czym właściwie jest uczenie maszynowe?
- Proces uczenia głębokiego
- Określenie celu
- Zebranie zestawu danych
- Wybór danych
- Zbieranie danych
- Etykietowanie danych
- Nasz gotowy zestaw danych
- Zaprojektowanie architektury modelu
- Generowanie atrybutów z danych
- Tworzenie okien czasowych
- Normalizacja
- Myślenie z uczeniem maszynowym
- Generowanie atrybutów z danych
- Trenowanie modelu
- Niedotrenowanie i przetrenowanie
- Trening, walidacja i testowanie
- Przekształcenie modelu
- Uruchomienie procesu wnioskowania
- Ocena i rozwiązanie ewentualnych problemów
- Podsumowanie
- Rozdział 4. Witaj, świecie TinyML: budowa i trenowanie modelu
- Co będziemy budować?
- Nasz zestaw narzędzi do uczenia maszynowego
- Python i Jupyter Notebooks
- Google Colaboratory
- TensorFlow i Keras
- Budowa naszego modelu
- Importowanie pakietów
- Generowanie danych
- Rozdzielanie danych
- Definiowanie podstawowego modelu
- Trenowanie naszego modelu
- Wskaźniki treningu
- Wykres historii
- Ulepszenie naszego modelu
- Test
- Konwertowanie modelu na potrzeby TensorFlow Lite
- Konwertowanie na plik C
- Podsumowanie
- Rozdział 5. Witaj, świecie TinyML: budowanie aplikacji
- Omówienie testów
- Dodawanie zależności
- Przygotowanie testów
- Przygotowanie do rejestrowania danych
- Mapowanie naszego modelu
- Klasa AllOpsResolver
- Alokacja pamięci dla modelu
- Tworzenie interpretera
- Sprawdzenie tensora wejścia
- Uruchamianie procesu wnioskowania
- Odczytywanie danych wyjściowych
- Uruchamianie testów
- Pobieranie kodu
- Uruchamianie testów za pomocą Make
- Budowa pliku z projektem
- Omówienie kodu źródłowego
- Początek pliku main_functions.cc
- Obsługa wyjścia za pomocą output_handler.cc
- Koniec pliku main_functions.cc
- Omówienie pliku main.cc
- Uruchomienie aplikacji
- Podsumowanie
- Omówienie testów
- Rozdział 6. Witaj, świecie TinyML: uruchomienie aplikacji na mikrokontrolerze
- Czym właściwie jest mikrokontroler?
- Arduino
- Obsługa wyjścia na Arduino
- Uruchomienie przykładu
- Wprowadzanie własnych zmian
- SparkFun Edge
- Obsługa wyjścia na SparkFun Edge
- Uruchomienie przykładu
- Kompilacja
- Podpis pliku binarnego
- Wgrywanie pliku binarnego
- Podłączenie konwertera USB do płytki
- Podłączenie konwertera do komputera
- Uruchomienie skryptu do wgrania nowego programu na płytkę
- Testowanie programu
- Sprawdzanie danych o przebiegu programu
- Wprowadzanie własnych zmian
- Zestaw ST Microelectronics STM32F746G Discovery
- Obsługa wyjścia na STM32F746G
- Uruchomienie przykładu
- Wprowadzanie własnych zmian
- Podsumowanie
- Rozdział 7. Wykrywanie słowa wybudzającego: budowanie aplikacji
- Co będziemy tworzyć?
- Architektura aplikacji
- Wprowadzenie do naszego modelu
- Wszystkie elementy aplikacji
- Omówienie testów
- Podstawowy przepływ danych
- Element dostarczający dane audio
- Element dostarczający cechy
- Sposób przetwarzania dźwięku na spektrogram przez element dostarczający dane audio
- Element rozpoznający polecenia
- Element reagujący na polecenia
- Nasłuchiwanie słów wybudzających
- Uruchomienie naszej aplikacji
- Uruchomienie aplikacji na mikrokontrolerach
- Arduino
- Element reagujący na polecenia dla Arduino
- Uruchomienie przykładu
- Wprowadzanie własnych zmian
- SparkFun Edge
- Element reagujący na polecenia dla SparkFun Edge
- Uruchomienie przykładu
- Kompilacja
- Podpis pliku binarnego
- Wgrywanie pliku binarnego
- Podłączenie konwertera USB do płytki
- Podłączenie konwertera do komputera
- Uruchomienie skryptu do wgrania nowego programu na płytkę
- Testowanie programu
- Sprawdzanie danych o przebiegu programu
- Wprowadzanie własnych zmian
- Zestaw ST Microelectronics STM32F746G Discovery
- Element reagujący na polecenia dla STM32F746G
- Uruchomienie przykładu
- Testowanie programu
- Podgląd informacji o przebiegu programu
- Wprowadzanie własnych zmian
- Arduino
- Podsumowanie
- Rozdział 8. Wykrywanie słowa wybudzającego: trenowanie modelu
- Trenowanie naszego nowego modelu
- Trenowanie w Colab
- Trenowanie z użyciem GPU
- Konfiguracja treningu
- Instalacja pakietów
- Narzędzie TensorBoard
- Rozpoczęcie treningu
- Oczekiwanie na zakończenie treningu
- Pilnowanie, by Colab się nie wyłączył
- Zamrażanie grafu
- Konwertowanie na format TensorFlow Lite
- Utworzenie tablicy C
- Trenowanie w Colab
- Wykorzystanie modelu w naszym projekcie
- Zastępowanie modelu
- Zmiana etykiet
- Zmiany w kodzie command_responder.cc
- Arduino
- SparkFun Edge
- STM32F746G
- Inne sposoby uruchamiania skryptów
- Zasada działania modelu
- Wizualizacja danych wejściowych
- Zasada działania generowania cech
- Architektura modelu
- Dane wyjściowe modelu
- Trenowanie modelu z własnymi danymi
- Zestaw danych Speech Commands
- Trenowanie modelu na własnych danych
- Nagrywanie własnych dźwięków
- Powiększenie zestawu danych
- Architektury modeli
- Podsumowanie
- Trenowanie naszego nowego modelu
- Rozdział 9. Wykrywanie osoby: budowanie aplikacji
- Co będziemy budować?
- Architektura aplikacji
- Wprowadzenie do naszego modelu
- Wszystkie elementy aplikacji
- Omówienie testów
- Podstawowy przepływ danych
- Element dostarczający obrazy
- Element reagujący na wykrycie człowieka
- Wykrywanie ludzi
- Uruchomienie aplikacji na mikrokontrolerach
- Arduino
- Wybór modułu kamery
- Przechwytywanie obrazów na Arduino
- Reagowanie na wykrycie człowieka na Arduino
- Uruchomienie przykładu
- Wprowadzanie własnych zmian
- SparkFun Edge
- Wybór modułu kamery
- Przechwytywanie obrazów na SparkFun Edge
- Reagowanie na wykrycie człowieka na SparkFun Edge
- Uruchomienie przykładu
- Kompilacja
- Podpisanie pliku binarnego
- Wgrywanie pliku binarnego
- Podłączenie konwertera USB do płytki
- Podłączenie konwertera do komputera
- Uruchomienie skryptu do wgrania nowego programu na płytkę
- Testowanie programu
- Sprawdzanie danych o przebiegu programu
- Wprowadzanie własnych zmian
- Arduino
- Podsumowanie
- Rozdział 10. Wykrywanie osoby: trenowanie modelu
- Wybór maszyny
- Konfiguracja instancji Google Cloud Platform
- Wybór platformy programistycznej do treningu
- Tworzenie zestawu danych
- Trenowanie modelu
- TensorBoard
- Ocena modelu
- Eksportowanie modelu do TensorFlow Lite
- Eksportowanie do pliku GraphDef Protobuf
- Zamrażanie wag
- Kwantyzacja i konwertowanie na potrzeby TensorFlow Lite
- Konwertowanie na plik źródłowy C
- Trenowanie dla innych kategorii
- Architektura MobileNet
- Podsumowanie
- Rozdział 11. Magiczna różdżka: budowanie aplikacji
- Co będziemy tworzyć?
- Architektura aplikacji
- Wprowadzenie do naszego modelu
- Wszystkie elementy aplikacji
- Omówienie testów
- Podstawowy przepływ danych
- Element obsługujący akcelerometr
- Element przewidujący gesty
- Element reagujący na wykrycie gestu
- Wykrywanie gestu
- Uruchomienie aplikacji na mikrokontrolerach
- Arduino
- Stałe Arduino
- Odczytywanie pomiarów z akcelerometru na Arduino
- Reagowanie na gesty za pomocą Arduino
- Uruchomienie przykładu
- Wprowadzanie własnych zmian
- SparkFun Edge
- Odczytywanie pomiarów z akcelerometru na SparkFun Edge
- Reagowanie na gesty za pomocą SparkFun Edge
- Uruchomienie przykładu
- Kompilacja
- Podpis pliku binarnego
- Wgrywanie pliku binarnego
- Podłączenie konwertera USB do płytki
- Podłączenie konwertera do komputera
- Uruchomienie skryptu do wgrania nowego programu na płytkę
- Testowanie programu
- Wprowadzanie własnych zmian
- Arduino
- Podsumowanie
- Rozdział 12. Magiczna różdżka: trenowanie modelu
- Trenowanie modelu
- Trening w Colab
- Trenowanie z użyciem GPU
- Instalacja pakietów
- Przygotowanie danych
- Uruchomienie TensorBoard
- Rozpoczęcie treningu
- Ocena wyników
- Utworzenie tablicy C
- Inne sposoby uruchamiania skryptów
- Trening w Colab
- Zasada działania modelu
- Wizualizacja danych wejściowych
- Architektura modelu
- Trenowanie modelu z własnymi danymi
- Przechwytywanie danych
- SparkFun Edge
- Rejestrowanie danych
- Modyfikacja skryptów trenujących
- Trening
- Wykorzystanie nowego modelu
- Przechwytywanie danych
- Podsumowanie
- Uczenie się uczenia maszynowego
- Co dalej?
- Trenowanie modelu
- Rozdział 13. TensorFlow Lite dla mikrokontrolerów
- Czym jest TensorFlow Lite dla mikrokontrolerów?
- TensorFlow
- TensorFlow Lite
- TensorFlow Lite dla mikrokontrolerów
- Wymagania
- Dlaczego model potrzebuje interpretera?
- Generowanie projektu
- Kompilatory
- Wyspecjalizowany kod
- Pliki Makefile
- Pisanie testów
- Obsługa nowej platformy sprzętowej
- Wyświetlanie rejestru zdarzeń
- Wdrożenie funkcji DebugLog()
- Uruchamianie wszystkich plików źródłowych
- Integracja z plikami Makefile
- Obsługa nowego IDE lub kompilatora
- Integrowanie zmian w kodzie projektu z repozytoriami
- Wnoszenie swojego wkładu do kodu z otwartym źródłem
- Obsługa nowego akceleratora sprzętowego
- Format pliku
- Biblioteka FlatBuffers
- Przenoszenie operacji TensorFlow Lite Mobile na wersję dla mikrokontrolerów
- Oddzielanie kodu odniesienia
- Utworzenie kopii operatora dla mikrokontrolera
- Tworzenie wersji testów dla mikrokontrolerów
- Tworzenie testu Bazel
- Dodanie swojego operatora do obiektu AllOpsResolver
- Kompilacja testu pliku Makefile
- Podsumowanie
- Czym jest TensorFlow Lite dla mikrokontrolerów?
- Rozdział 14. Projektowanie własnych aplikacji TinyML
- Projektowanie
- Czy potrzebny jest mikrokontroler, czy może być większe urządzenie?
- Co jest możliwe?
- Podążanie czyimiś śladami
- Podobne modele do trenowania
- Sprawdzenie danych
- Magia Czarnoksiężnika z krainy Oz
- Poprawnie działająca wersja na komputerze jako pierwszy etap
- Rozdział 15. Optymalizacja prędkości działania programu
- Prędkość modelu a prędkość ogólna aplikacji
- Zmiany sprzętu
- Ulepszenia modelu
- Ocena opóźnienia modelu
- Przyspieszanie modelu
- Kwantyzacja
- Etap projektowania produktu
- Optymalizacje kodu
- Profilowanie wydajności
- Miganie
- Metoda strzelby
- Wyświetlanie informacji z przebiegu programu
- Analizator stanów logicznych
- Licznik
- Profilowanie
- Profilowanie wydajności
- Optymalizowanie operacji
- Implementacje już zoptymalizowane
- Tworzenie własnej zoptymalizowanej implementacji
- Wykorzystanie funkcjonalności sprzętu
- Akceleratory i koprocesory
- Wnoszenie swojego wkładu do kodu z otwartym źródłem
- Podsumowanie
- Rozdział 16. Optymalizacja poboru mocy
- Rozwijanie intuicji
- Pobór mocy standardowych elementów
- Wybór sprzętu
- Pomiar rzeczywistego poboru mocy
- Oszacowanie poboru mocy modelu
- Ulepszenia związane z zużyciem energii
- Cykl pracy
- Projektowanie kaskadowe
- Podsumowanie
- Rozwijanie intuicji
- Rozdział 17. Optymalizacja modelu i rozmiaru pliku binarnego
- Zrozumienie ograniczeń własnego systemu
- Oszacowanie zużycia pamięci
- Zużycie pamięci flash
- Zużycie pamięci RAM
- Szacunkowe wartości dokładności i rozmiaru modelu przy różnych problemach
- Model rozpoznający słowa wybudzające
- Model predykcyjnego utrzymania
- Wykrywanie obecności człowieka
- Wybór modelu
- Zmniejszenie rozmiaru pliku wykonywalnego
- Mierzenie rozmiaru kodu
- Ile miejsca zajmuje TensorFlow Lite dla mikrokontrolerów?
- OpResolver
- Rozmiar pojedynczych funkcji
- Stałe w platformie TensorFlow Lite
- Naprawdę malutkie modele
- Podsumowanie
- Rozdział 18. Debugowanie
- Różnica w dokładności między treningiem a wdrożeniem
- Różnice we wstępnym przetwarzaniu danych
- Debugowanie wstępnego przetwarzania danych
- Ocena działania programu na urządzeniu docelowym
- Różnice liczbowe
- Czy różnice stanowią problem?
- Ustalenie wskaźnika
- Punkt odniesienia
- Zamiana implementacji
- Tajemnicze awarie
- Debugowanie na pulpicie
- Sprawdzanie rejestru
- Debugowanie metodą strzelby
- Błędy związane z pamięcią
- Podsumowanie
- Różnica w dokładności między treningiem a wdrożeniem
- Rozdział 19. Przenoszenie modelu z TensorFlow do TensorFlow Lite
- Określenie wymaganych operacji
- Operacje obsługiwane w TensorFlow Lite
- Przeniesienie wstępnego i końcowego przetwarzania do kodu aplikacji
- Implementacja niezbędnych operacji
- Optymalizacja operacji
- Podsumowanie
- Rozdział 20. Prywatność, bezpieczeństwo i wdrażanie
- Prywatność
- PDD
- Zbieranie danych
- Wykorzystanie danych
- Dzielenie się danymi i ich przechowywanie
- Zgoda
- Używanie PDD
- PDD
- Bezpieczeństwo
- Ochrona modeli
- Wdrożenie
- Przejście od płytki do produktu
- Podsumowanie
- Prywatność
- Rozdział 21. Poszerzanie wiedzy
- Fundacja TinyML
- SIG Micro
- Strona internetowa TensorFlow
- Inne platformy programistyczne
- Przyjaciele TinyML
- Podsumowanie
- Dodatek A Używanie i tworzenie biblioteki Arduino w formacie ZIP
- Dodatek B Przechwytywanie dźwięku na Arduino
- O autorach
- Kolofon
- Tytuł: TinyML. Wykorzystanie TensorFlow Lite do uczenia maszynowego na Arduino i innych mikrokontrolerach
- Autor: Pete Warden, Daniel Situnayake
- Tytuł oryginału: TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers
- Tłumaczenie: Anna Mizerska
- ISBN: 978-83-283-8363-0, 9788328383630
- Data wydania: 2022-02-15
- Format: Ebook
- Identyfikator pozycji: tinyml
- Wydawca: Helion