Категорії
Електронні книги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комп'ютер в офісі
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Мультимедійне навчання
- Нерухомість
- Переконання та НЛП
- Податки
- Соціальна політика
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Звіти, аналізи
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Електронна преса
- Architektura i wnętrza
- Biznes i Ekonomia
- Будинок та сад
- Електронний бізнес
- Фінанси
- Особисті фінанси
- Бізнес
- Фотографія
- Інформатика
- Відділ кадрів та оплата праці
- Комп'ютери, Excel
- Бухгалтерія
- Культура та література
- Наукові та академічні
- Охорона навколишнього середовища
- Впливові
- Освіта
- Податки
- Подорожі
- Психологія
- Релігія
- Сільське господарство
- Ринок книг і преси
- Транспорт та спедиція
- Здоров'я та краса
-
Історія
-
Інформатика
- Офісні застосунки
- Бази даних
- Біоінформатика
- Бізнес ІТ
- CAD/CAM
- Digital Lifestyle
- DTP
- Електроніка
- Цифрова фотографія
- Комп'ютерна графіка
- Ігри
- Хакування
- Hardware
- IT w ekonomii
- Наукові пакети
- Шкільні підручники
- Основи комп'ютера
- Програмування
- Мобільне програмування
- Інтернет-сервери
- Комп'ютерні мережі
- Стартап
- Операційні системи
- Штучний інтелект
- Технологія для дітей
- Вебмайстерність
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Оповідна поезія
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Шкільні підручники
-
Науково-популярна та академічна
- Археологія
- Bibliotekoznawstwo
- Кінознавство / Теорія кіно
- Філологія
- Польська філологія
- Філософія
- Finanse i bankowość
- Географія
- Економіка
- Торгівля. Світова економіка
- Історія та археологія
- Історія мистецтва і архітектури
- Культурологія
- Мовознавство
- літературні студії
- Логістика
- Математика
- Ліки
- Гуманітарні науки
- Педагогіка
- Навчальні засоби
- Науково-популярна
- Інше
- Психологія
- Соціологія
- Театральні студії
- Богослов’я
- Економічні теорії та науки
- Transport i spedycja
- Фізичне виховання
- Zarządzanie i marketing
-
Порадники
-
Ігрові посібники
-
Професійні та спеціальні порадники
-
Юридична
- Безпека життєдіяльності
- Історія
- Дорожній кодекс. Водійські права
- Юридичні науки
- Охорона здоров'я
- Загальне, компендіум
- Академічні підручники
- Інше
- Закон про будівництво і житло
- Цивільне право
- Фінансове право
- Господарське право
- Господарське та комерційне право
- Кримінальний закон
- Кримінальне право. Кримінальні злочини. Кримінологія
- Міжнародне право
- Міжнародне та іноземне право
- Закон про охорону здоров'я
- Закон про освіту
- Податкове право
- Трудове право та законодавство про соціальне забезпечення
- Громадське, конституційне та адміністративне право
- Кодекс про шлюб і сім'ю
- Аграрне право
- Соціальне право, трудове право
- Законодавство Євросоюзу
- Промисловість
- Сільське господарство та захист навколишнього середовища
- Словники та енциклопедії
- Державні закупівлі
- Управління
-
Путівники та подорожі
- Африка
- Альбоми
- Південна Америка
- Центральна та Північна Америка
- Австралія, Нова Зеландія, Океанія
- Австрія
- Азії
- Балкани
- Близький Схід
- Болгарія
- Китай
- Хорватія
- Чеська Республіка
- Данія
- Єгипет
- Естонія
- Європа
- Франція
- Гори
- Греція
- Іспанія
- Нідерланди
- Ісландія
- Литва
- Латвія
- Mapy, Plany miast, Atlasy
- Мініпутівники
- Німеччина
- Норвегія
- Активні подорожі
- Польща
- Португалія
- Інше
- Росія
- Румунія
- Словаччина
- Словенія
- Швейцарія
- Швеція
- Світ
- Туреччина
- Україна
- Угорщина
- Велика Британія
- Італія
-
Психологія
- Філософія життя
- Kompetencje psychospołeczne
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Аудіокниги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Нерухомість
- Переконання та НЛП
- Податки
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Історія
-
Інформатика
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Науково-популярна та академічна
-
Порадники
-
Професійні та спеціальні порадники
-
Юридична
-
Путівники та подорожі
-
Психологія
- Філософія життя
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Відеокурси
-
Бази даних
-
Big Data
-
Biznes, ekonomia i marketing
-
Кібербезпека
-
Data Science
-
DevOps
-
Для дітей
-
Електроніка
-
Графіка / Відео / CAX
-
Ігри
-
Microsoft Office
-
Інструменти розробки
-
Програмування
-
Особистісний розвиток
-
Комп'ютерні мережі
-
Операційні системи
-
Тестування програмного забезпечення
-
Мобільні пристрої
-
UX/UI
-
Веброзробка, Web development
-
Управління
Подкасти
- Електронні книги
- Електроніка
- Arduino
- TinyML. Wykorzystanie TensorFlow Lite do uczenia maszynowego na Arduino i innych mikrokontrolerach
Деталі електронної книги
TinyML. Wykorzystanie TensorFlow Lite do uczenia maszynowego na Arduino i innych mikrokontrolerach
Pete Warden, Daniel Situnayake
Może się wydawać, że profesjonalne systemy uczenia maszynowego wymagają sporych zasobów mocy obliczeniowej i energii. Okazuje się, że niekoniecznie: można tworzyć zaawansowane, oparte na sieciach neuronowych aplikacje, które doskonale poradzą sobie bez potężnych procesorów. Owszem, praca na mikrokontrolerach podobnych do Arduino lub systemach wbudowanych wymaga pewnego przygotowania i odpowiedniego podejścia, jest to jednak fascynujący sposób na wykorzystanie niewielkich urządzeń o niskim zapotrzebowaniu na energię do tworzenia zdumiewających projektów.
Ta książka jest przystępnym wprowadzeniem do skomplikowanego świata, w którym za pomocą techniki TinyML wdraża się głębokie uczenie maszynowe w systemach wbudowanych. Nie musisz mieć żadnego doświadczenia z zakresu uczenia maszynowego czy pracy z mikrokontrolerami. W książce wyjaśniono, jak można trenować modele na tyle małe, by mogły działać w każdym środowisku - również Arduino. Dokładnie opisano sposoby użycia techniki TinyML w tworzeniu systemów wbudowanych opartych na zastosowaniu ucze nia maszynowego. Zaprezentowano też kilka ciekawych projektów, na przykład dotyczący budowy urządzenia rozpoznającego mowę, magicznej różdżki reagującej na gesty, a także rozszerzenia możliwości kamery o wykrywanie ludzi.
W książce między innymi:
- praca z Arduino i innymi mikrokontrolerami o niskim poborze mocy
- podstawy uczenia maszynowego, budowy i treningu modeli
- TensorFlow Lite i zestaw narzędzi Google dla TinyML
- bezpieczeństwo i ochrona prywatności w aplikacji
- optymalizacja modelu
- tworzenie modeli do interpretacji różnego rodzaju danych
Ograniczone zasoby? Poznaj TinyML!
- Wstęp
- Konwencje typograficzne przyjęte w tej książce
- Korzystanie z przykładowych kodów
- Podziękowania
- Rozdział 1. Wprowadzenie
- Urządzenia z systemem wbudowanym
- Ciągły rozwój
- Rozdział 2. Informacje wstępne
- Do kogo skierowana jest ta książka?
- Jaki sprzęt będzie Ci potrzebny?
- Jakie oprogramowanie będzie Ci potrzebne?
- Czego nauczysz się dzięki tej książce?
- Rozdział 3. Wprowadzenie do uczenia maszynowego
- Czym właściwie jest uczenie maszynowe?
- Proces uczenia głębokiego
- Określenie celu
- Zebranie zestawu danych
- Wybór danych
- Zbieranie danych
- Etykietowanie danych
- Nasz gotowy zestaw danych
- Zaprojektowanie architektury modelu
- Generowanie atrybutów z danych
- Tworzenie okien czasowych
- Normalizacja
- Myślenie z uczeniem maszynowym
- Generowanie atrybutów z danych
- Trenowanie modelu
- Niedotrenowanie i przetrenowanie
- Trening, walidacja i testowanie
- Przekształcenie modelu
- Uruchomienie procesu wnioskowania
- Ocena i rozwiązanie ewentualnych problemów
- Podsumowanie
- Rozdział 4. Witaj, świecie TinyML: budowa i trenowanie modelu
- Co będziemy budować?
- Nasz zestaw narzędzi do uczenia maszynowego
- Python i Jupyter Notebooks
- Google Colaboratory
- TensorFlow i Keras
- Budowa naszego modelu
- Importowanie pakietów
- Generowanie danych
- Rozdzielanie danych
- Definiowanie podstawowego modelu
- Trenowanie naszego modelu
- Wskaźniki treningu
- Wykres historii
- Ulepszenie naszego modelu
- Test
- Konwertowanie modelu na potrzeby TensorFlow Lite
- Konwertowanie na plik C
- Podsumowanie
- Rozdział 5. Witaj, świecie TinyML: budowanie aplikacji
- Omówienie testów
- Dodawanie zależności
- Przygotowanie testów
- Przygotowanie do rejestrowania danych
- Mapowanie naszego modelu
- Klasa AllOpsResolver
- Alokacja pamięci dla modelu
- Tworzenie interpretera
- Sprawdzenie tensora wejścia
- Uruchamianie procesu wnioskowania
- Odczytywanie danych wyjściowych
- Uruchamianie testów
- Pobieranie kodu
- Uruchamianie testów za pomocą Make
- Budowa pliku z projektem
- Omówienie kodu źródłowego
- Początek pliku main_functions.cc
- Obsługa wyjścia za pomocą output_handler.cc
- Koniec pliku main_functions.cc
- Omówienie pliku main.cc
- Uruchomienie aplikacji
- Podsumowanie
- Omówienie testów
- Rozdział 6. Witaj, świecie TinyML: uruchomienie aplikacji na mikrokontrolerze
- Czym właściwie jest mikrokontroler?
- Arduino
- Obsługa wyjścia na Arduino
- Uruchomienie przykładu
- Wprowadzanie własnych zmian
- SparkFun Edge
- Obsługa wyjścia na SparkFun Edge
- Uruchomienie przykładu
- Kompilacja
- Podpis pliku binarnego
- Wgrywanie pliku binarnego
- Podłączenie konwertera USB do płytki
- Podłączenie konwertera do komputera
- Uruchomienie skryptu do wgrania nowego programu na płytkę
- Testowanie programu
- Sprawdzanie danych o przebiegu programu
- Wprowadzanie własnych zmian
- Zestaw ST Microelectronics STM32F746G Discovery
- Obsługa wyjścia na STM32F746G
- Uruchomienie przykładu
- Wprowadzanie własnych zmian
- Podsumowanie
- Rozdział 7. Wykrywanie słowa wybudzającego: budowanie aplikacji
- Co będziemy tworzyć?
- Architektura aplikacji
- Wprowadzenie do naszego modelu
- Wszystkie elementy aplikacji
- Omówienie testów
- Podstawowy przepływ danych
- Element dostarczający dane audio
- Element dostarczający cechy
- Sposób przetwarzania dźwięku na spektrogram przez element dostarczający dane audio
- Element rozpoznający polecenia
- Element reagujący na polecenia
- Nasłuchiwanie słów wybudzających
- Uruchomienie naszej aplikacji
- Uruchomienie aplikacji na mikrokontrolerach
- Arduino
- Element reagujący na polecenia dla Arduino
- Uruchomienie przykładu
- Wprowadzanie własnych zmian
- SparkFun Edge
- Element reagujący na polecenia dla SparkFun Edge
- Uruchomienie przykładu
- Kompilacja
- Podpis pliku binarnego
- Wgrywanie pliku binarnego
- Podłączenie konwertera USB do płytki
- Podłączenie konwertera do komputera
- Uruchomienie skryptu do wgrania nowego programu na płytkę
- Testowanie programu
- Sprawdzanie danych o przebiegu programu
- Wprowadzanie własnych zmian
- Zestaw ST Microelectronics STM32F746G Discovery
- Element reagujący na polecenia dla STM32F746G
- Uruchomienie przykładu
- Testowanie programu
- Podgląd informacji o przebiegu programu
- Wprowadzanie własnych zmian
- Arduino
- Podsumowanie
- Rozdział 8. Wykrywanie słowa wybudzającego: trenowanie modelu
- Trenowanie naszego nowego modelu
- Trenowanie w Colab
- Trenowanie z użyciem GPU
- Konfiguracja treningu
- Instalacja pakietów
- Narzędzie TensorBoard
- Rozpoczęcie treningu
- Oczekiwanie na zakończenie treningu
- Pilnowanie, by Colab się nie wyłączył
- Zamrażanie grafu
- Konwertowanie na format TensorFlow Lite
- Utworzenie tablicy C
- Trenowanie w Colab
- Wykorzystanie modelu w naszym projekcie
- Zastępowanie modelu
- Zmiana etykiet
- Zmiany w kodzie command_responder.cc
- Arduino
- SparkFun Edge
- STM32F746G
- Inne sposoby uruchamiania skryptów
- Zasada działania modelu
- Wizualizacja danych wejściowych
- Zasada działania generowania cech
- Architektura modelu
- Dane wyjściowe modelu
- Trenowanie modelu z własnymi danymi
- Zestaw danych Speech Commands
- Trenowanie modelu na własnych danych
- Nagrywanie własnych dźwięków
- Powiększenie zestawu danych
- Architektury modeli
- Podsumowanie
- Trenowanie naszego nowego modelu
- Rozdział 9. Wykrywanie osoby: budowanie aplikacji
- Co będziemy budować?
- Architektura aplikacji
- Wprowadzenie do naszego modelu
- Wszystkie elementy aplikacji
- Omówienie testów
- Podstawowy przepływ danych
- Element dostarczający obrazy
- Element reagujący na wykrycie człowieka
- Wykrywanie ludzi
- Uruchomienie aplikacji na mikrokontrolerach
- Arduino
- Wybór modułu kamery
- Przechwytywanie obrazów na Arduino
- Reagowanie na wykrycie człowieka na Arduino
- Uruchomienie przykładu
- Wprowadzanie własnych zmian
- SparkFun Edge
- Wybór modułu kamery
- Przechwytywanie obrazów na SparkFun Edge
- Reagowanie na wykrycie człowieka na SparkFun Edge
- Uruchomienie przykładu
- Kompilacja
- Podpisanie pliku binarnego
- Wgrywanie pliku binarnego
- Podłączenie konwertera USB do płytki
- Podłączenie konwertera do komputera
- Uruchomienie skryptu do wgrania nowego programu na płytkę
- Testowanie programu
- Sprawdzanie danych o przebiegu programu
- Wprowadzanie własnych zmian
- Arduino
- Podsumowanie
- Rozdział 10. Wykrywanie osoby: trenowanie modelu
- Wybór maszyny
- Konfiguracja instancji Google Cloud Platform
- Wybór platformy programistycznej do treningu
- Tworzenie zestawu danych
- Trenowanie modelu
- TensorBoard
- Ocena modelu
- Eksportowanie modelu do TensorFlow Lite
- Eksportowanie do pliku GraphDef Protobuf
- Zamrażanie wag
- Kwantyzacja i konwertowanie na potrzeby TensorFlow Lite
- Konwertowanie na plik źródłowy C
- Trenowanie dla innych kategorii
- Architektura MobileNet
- Podsumowanie
- Rozdział 11. Magiczna różdżka: budowanie aplikacji
- Co będziemy tworzyć?
- Architektura aplikacji
- Wprowadzenie do naszego modelu
- Wszystkie elementy aplikacji
- Omówienie testów
- Podstawowy przepływ danych
- Element obsługujący akcelerometr
- Element przewidujący gesty
- Element reagujący na wykrycie gestu
- Wykrywanie gestu
- Uruchomienie aplikacji na mikrokontrolerach
- Arduino
- Stałe Arduino
- Odczytywanie pomiarów z akcelerometru na Arduino
- Reagowanie na gesty za pomocą Arduino
- Uruchomienie przykładu
- Wprowadzanie własnych zmian
- SparkFun Edge
- Odczytywanie pomiarów z akcelerometru na SparkFun Edge
- Reagowanie na gesty za pomocą SparkFun Edge
- Uruchomienie przykładu
- Kompilacja
- Podpis pliku binarnego
- Wgrywanie pliku binarnego
- Podłączenie konwertera USB do płytki
- Podłączenie konwertera do komputera
- Uruchomienie skryptu do wgrania nowego programu na płytkę
- Testowanie programu
- Wprowadzanie własnych zmian
- Arduino
- Podsumowanie
- Rozdział 12. Magiczna różdżka: trenowanie modelu
- Trenowanie modelu
- Trening w Colab
- Trenowanie z użyciem GPU
- Instalacja pakietów
- Przygotowanie danych
- Uruchomienie TensorBoard
- Rozpoczęcie treningu
- Ocena wyników
- Utworzenie tablicy C
- Inne sposoby uruchamiania skryptów
- Trening w Colab
- Zasada działania modelu
- Wizualizacja danych wejściowych
- Architektura modelu
- Trenowanie modelu z własnymi danymi
- Przechwytywanie danych
- SparkFun Edge
- Rejestrowanie danych
- Modyfikacja skryptów trenujących
- Trening
- Wykorzystanie nowego modelu
- Przechwytywanie danych
- Podsumowanie
- Uczenie się uczenia maszynowego
- Co dalej?
- Trenowanie modelu
- Rozdział 13. TensorFlow Lite dla mikrokontrolerów
- Czym jest TensorFlow Lite dla mikrokontrolerów?
- TensorFlow
- TensorFlow Lite
- TensorFlow Lite dla mikrokontrolerów
- Wymagania
- Dlaczego model potrzebuje interpretera?
- Generowanie projektu
- Kompilatory
- Wyspecjalizowany kod
- Pliki Makefile
- Pisanie testów
- Obsługa nowej platformy sprzętowej
- Wyświetlanie rejestru zdarzeń
- Wdrożenie funkcji DebugLog()
- Uruchamianie wszystkich plików źródłowych
- Integracja z plikami Makefile
- Obsługa nowego IDE lub kompilatora
- Integrowanie zmian w kodzie projektu z repozytoriami
- Wnoszenie swojego wkładu do kodu z otwartym źródłem
- Obsługa nowego akceleratora sprzętowego
- Format pliku
- Biblioteka FlatBuffers
- Przenoszenie operacji TensorFlow Lite Mobile na wersję dla mikrokontrolerów
- Oddzielanie kodu odniesienia
- Utworzenie kopii operatora dla mikrokontrolera
- Tworzenie wersji testów dla mikrokontrolerów
- Tworzenie testu Bazel
- Dodanie swojego operatora do obiektu AllOpsResolver
- Kompilacja testu pliku Makefile
- Podsumowanie
- Czym jest TensorFlow Lite dla mikrokontrolerów?
- Rozdział 14. Projektowanie własnych aplikacji TinyML
- Projektowanie
- Czy potrzebny jest mikrokontroler, czy może być większe urządzenie?
- Co jest możliwe?
- Podążanie czyimiś śladami
- Podobne modele do trenowania
- Sprawdzenie danych
- Magia Czarnoksiężnika z krainy Oz
- Poprawnie działająca wersja na komputerze jako pierwszy etap
- Rozdział 15. Optymalizacja prędkości działania programu
- Prędkość modelu a prędkość ogólna aplikacji
- Zmiany sprzętu
- Ulepszenia modelu
- Ocena opóźnienia modelu
- Przyspieszanie modelu
- Kwantyzacja
- Etap projektowania produktu
- Optymalizacje kodu
- Profilowanie wydajności
- Miganie
- Metoda strzelby
- Wyświetlanie informacji z przebiegu programu
- Analizator stanów logicznych
- Licznik
- Profilowanie
- Profilowanie wydajności
- Optymalizowanie operacji
- Implementacje już zoptymalizowane
- Tworzenie własnej zoptymalizowanej implementacji
- Wykorzystanie funkcjonalności sprzętu
- Akceleratory i koprocesory
- Wnoszenie swojego wkładu do kodu z otwartym źródłem
- Podsumowanie
- Rozdział 16. Optymalizacja poboru mocy
- Rozwijanie intuicji
- Pobór mocy standardowych elementów
- Wybór sprzętu
- Pomiar rzeczywistego poboru mocy
- Oszacowanie poboru mocy modelu
- Ulepszenia związane z zużyciem energii
- Cykl pracy
- Projektowanie kaskadowe
- Podsumowanie
- Rozwijanie intuicji
- Rozdział 17. Optymalizacja modelu i rozmiaru pliku binarnego
- Zrozumienie ograniczeń własnego systemu
- Oszacowanie zużycia pamięci
- Zużycie pamięci flash
- Zużycie pamięci RAM
- Szacunkowe wartości dokładności i rozmiaru modelu przy różnych problemach
- Model rozpoznający słowa wybudzające
- Model predykcyjnego utrzymania
- Wykrywanie obecności człowieka
- Wybór modelu
- Zmniejszenie rozmiaru pliku wykonywalnego
- Mierzenie rozmiaru kodu
- Ile miejsca zajmuje TensorFlow Lite dla mikrokontrolerów?
- OpResolver
- Rozmiar pojedynczych funkcji
- Stałe w platformie TensorFlow Lite
- Naprawdę malutkie modele
- Podsumowanie
- Rozdział 18. Debugowanie
- Różnica w dokładności między treningiem a wdrożeniem
- Różnice we wstępnym przetwarzaniu danych
- Debugowanie wstępnego przetwarzania danych
- Ocena działania programu na urządzeniu docelowym
- Różnice liczbowe
- Czy różnice stanowią problem?
- Ustalenie wskaźnika
- Punkt odniesienia
- Zamiana implementacji
- Tajemnicze awarie
- Debugowanie na pulpicie
- Sprawdzanie rejestru
- Debugowanie metodą strzelby
- Błędy związane z pamięcią
- Podsumowanie
- Różnica w dokładności między treningiem a wdrożeniem
- Rozdział 19. Przenoszenie modelu z TensorFlow do TensorFlow Lite
- Określenie wymaganych operacji
- Operacje obsługiwane w TensorFlow Lite
- Przeniesienie wstępnego i końcowego przetwarzania do kodu aplikacji
- Implementacja niezbędnych operacji
- Optymalizacja operacji
- Podsumowanie
- Rozdział 20. Prywatność, bezpieczeństwo i wdrażanie
- Prywatność
- PDD
- Zbieranie danych
- Wykorzystanie danych
- Dzielenie się danymi i ich przechowywanie
- Zgoda
- Używanie PDD
- PDD
- Bezpieczeństwo
- Ochrona modeli
- Wdrożenie
- Przejście od płytki do produktu
- Podsumowanie
- Prywatność
- Rozdział 21. Poszerzanie wiedzy
- Fundacja TinyML
- SIG Micro
- Strona internetowa TensorFlow
- Inne platformy programistyczne
- Przyjaciele TinyML
- Podsumowanie
- Dodatek A Używanie i tworzenie biblioteki Arduino w formacie ZIP
- Dodatek B Przechwytywanie dźwięku na Arduino
- O autorach
- Kolofon
- Назва: TinyML. Wykorzystanie TensorFlow Lite do uczenia maszynowego na Arduino i innych mikrokontrolerach
- Автор: Pete Warden, Daniel Situnayake
- Оригінальна назва: TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers
- Переклад: Anna Mizerska
- ISBN: 978-83-283-8363-0, 9788328383630
- Дата видання: 2022-02-15
- Формат: Eлектронна книга
- Ідентифікатор видання: tinyml
- Видавець: Helion