Категорії
Електронні книги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комп'ютер в офісі
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Мультимедійне навчання
- Нерухомість
- Переконання та НЛП
- Податки
- Соціальна політика
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Звіти, аналізи
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Електронна преса
- Architektura i wnętrza
- Biznes i Ekonomia
- Будинок та сад
- Електронний бізнес
- Фінанси
- Особисті фінанси
- Бізнес
- Фотографія
- Інформатика
- Відділ кадрів та оплата праці
- Комп'ютери, Excel
- Бухгалтерія
- Культура та література
- Наукові та академічні
- Охорона навколишнього середовища
- Впливові
- Освіта
- Податки
- Подорожі
- Психологія
- Релігія
- Сільське господарство
- Ринок книг і преси
- Транспорт та спедиція
- Здоров'я та краса
-
Історія
-
Інформатика
- Офісні застосунки
- Бази даних
- Біоінформатика
- Бізнес ІТ
- CAD/CAM
- Digital Lifestyle
- DTP
- Електроніка
- Цифрова фотографія
- Комп'ютерна графіка
- Ігри
- Хакування
- Hardware
- IT w ekonomii
- Наукові пакети
- Шкільні підручники
- Основи комп'ютера
- Програмування
- Мобільне програмування
- Інтернет-сервери
- Комп'ютерні мережі
- Стартап
- Операційні системи
- Штучний інтелект
- Технологія для дітей
- Вебмайстерність
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Оповідна поезія
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Шкільні підручники
-
Науково-популярна та академічна
- Археологія
- Bibliotekoznawstwo
- Кінознавство / Теорія кіно
- Філологія
- Польська філологія
- Філософія
- Finanse i bankowość
- Географія
- Економіка
- Торгівля. Світова економіка
- Історія та археологія
- Історія мистецтва і архітектури
- Культурологія
- Мовознавство
- літературні студії
- Логістика
- Математика
- Ліки
- Гуманітарні науки
- Педагогіка
- Навчальні засоби
- Науково-популярна
- Інше
- Психологія
- Соціологія
- Театральні студії
- Богослов’я
- Економічні теорії та науки
- Transport i spedycja
- Фізичне виховання
- Zarządzanie i marketing
-
Порадники
-
Ігрові посібники
-
Професійні та спеціальні порадники
-
Юридична
- Безпека життєдіяльності
- Історія
- Дорожній кодекс. Водійські права
- Юридичні науки
- Охорона здоров'я
- Загальне, компендіум
- Академічні підручники
- Інше
- Закон про будівництво і житло
- Цивільне право
- Фінансове право
- Господарське право
- Господарське та комерційне право
- Кримінальний закон
- Кримінальне право. Кримінальні злочини. Кримінологія
- Міжнародне право
- Міжнародне та іноземне право
- Закон про охорону здоров'я
- Закон про освіту
- Податкове право
- Трудове право та законодавство про соціальне забезпечення
- Громадське, конституційне та адміністративне право
- Кодекс про шлюб і сім'ю
- Аграрне право
- Соціальне право, трудове право
- Законодавство Євросоюзу
- Промисловість
- Сільське господарство та захист навколишнього середовища
- Словники та енциклопедії
- Державні закупівлі
- Управління
-
Путівники та подорожі
- Африка
- Альбоми
- Південна Америка
- Центральна та Північна Америка
- Австралія, Нова Зеландія, Океанія
- Австрія
- Азії
- Балкани
- Близький Схід
- Болгарія
- Китай
- Хорватія
- Чеська Республіка
- Данія
- Єгипет
- Естонія
- Європа
- Франція
- Гори
- Греція
- Іспанія
- Нідерланди
- Ісландія
- Литва
- Латвія
- Mapy, Plany miast, Atlasy
- Мініпутівники
- Німеччина
- Норвегія
- Активні подорожі
- Польща
- Португалія
- Інше
- Росія
- Румунія
- Словаччина
- Словенія
- Швейцарія
- Швеція
- Світ
- Туреччина
- Україна
- Угорщина
- Велика Британія
- Італія
-
Психологія
- Філософія життя
- Kompetencje psychospołeczne
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Аудіокниги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Нерухомість
- Переконання та НЛП
- Податки
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Історія
-
Інформатика
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Науково-популярна та академічна
-
Порадники
-
Професійні та спеціальні порадники
-
Юридична
-
Путівники та подорожі
-
Психологія
- Філософія життя
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Відеокурси
-
Бази даних
-
Big Data
-
Biznes, ekonomia i marketing
-
Кібербезпека
-
Data Science
-
DevOps
-
Для дітей
-
Електроніка
-
Графіка / Відео / CAX
-
Ігри
-
Microsoft Office
-
Інструменти розробки
-
Програмування
-
Особистісний розвиток
-
Комп'ютерні мережі
-
Операційні системи
-
Тестування програмного забезпечення
-
Мобільні пристрої
-
UX/UI
-
Веброзробка, Web development
-
Управління
Подкасти
- Електронні книги
- Програмування
- Python
- Uczenie maszynowe w Pythonie. Receptury. Od przygotowania danych do deep learningu. Wydanie II
Деталі електронної книги
Uczenie maszynowe w Pythonie. Receptury. Od przygotowania danych do deep learningu. Wydanie II
W ciągu ostatnich lat techniki uczenia maszynowego rozwijały się z niezwykłą dynamiką, rewolucjonizując pracę w różnych branżach. Obecnie do uczenia maszynowego najczęściej używa się Pythona i jego bibliotek. Znajomość najnowszych wydań tych narzędzi umożliwia efektywne tworzenie wyrafinowanych systemów uczących się.
Oto zaktualizowane wydanie popularnego przewodnika, dzięki któremu skorzystasz z ponad dwustu sprawdzonych receptur bazujących na najnowszych wydaniach bibliotek Pythona. Wystarczy, że skopiujesz i dostosujesz kod do swoich potrzeb. Możesz też go uruchamiać i testować za pomocą przykładowego zbioru danych. W książce znajdziesz receptury przydatne do rozwiązywania szerokiego spektrum problemów, od przygotowania i wczytania danych aż po trenowanie modeli i korzystanie z sieci neuronowych. W ten sposób wyjdziesz poza rozważania teoretyczne czy też matematyczne koncepcje i zaczniesz tworzyć aplikacje korzystające z uczenia maszynowego.
Poznaj receptury dotyczące:
- pracy z danymi w wielu formatach, z bazami i magazynami danych
- redukcji wymiarowości, jak również oceny i wyboru modelu
- regresji liniowej i logistycznej, drzew i lasów, a także k-najbliższych sąsiadów
- maszyn wektorów nośnych (SVM), naiwnej klasyfikacji bayesowskiej i klasteryzacji
- udostępniania wytrenowanych modeli za pomocą wielu frameworków
Długo szukałam książki, która spójnie przedstawiałaby algorytm ANN, hiperpłaszczyzny i wybór cech za pomocą losowego lasu. I wtedy pojawiła się ta pozycja!
Vicki Boykis, inżynier uczenia maszynowego w Duo
1. Wektor, macierz i tablica
- 1.0. Wprowadzenie
- 1.1. Tworzenie wektora
- 1.2. Tworzenie macierzy
- 1.3. Tworzenie macierzy rzadkiej
- 1.4. Wstępna alokacja tablicy NumPy
- 1.5. Pobieranie elementów
- 1.6. Opisywanie macierzy
- 1.7. Przeprowadzanie operacji na wszystkich elementach
- 1.8. Znajdowanie wartości maksymalnej i minimalnej
- 1.9. Obliczanie średniej, wariancji i odchylenia standardowego
- 1.10. Zmiana kształtu tablicy
- 1.11. Transponowanie wektora lub macierzy
- 1.12. Spłaszczanie macierzy
- 1.13. Znajdowanie rzędu macierzy
- 1.14. Pobieranie przekątnej macierzy
- 1.15. Obliczanie śladu macierzy
- 1.16. Obliczanie iloczynu skalarnego
- 1.17. Dodawanie i odejmowanie macierzy
- 1.18. Mnożenie macierzy
- 1.19. Odwracanie macierzy
- 1.20. Generowanie liczb losowych
2. Wczytywanie danych
- 2.0. Wprowadzenie
- 2.1. Wczytywanie przykładowego zbioru danych
- 2.2. Tworzenie symulowanego zbioru danych
- 2.3. Wczytywanie pliku CSV
- 2.4. Wczytywanie pliku Excela
- 2.5. Wczytywanie pliku JSON
- 2.6. Wczytywanie pliku Parquet
- 2.7. Wczytywanie pliku Avro
- 2.8. Wykonywanie zapytań do bazy danych SQLite
- 2.9. Wykonywanie zapytań do zdalnej bazy danych SQL
- 2.10. Wczytywanie danych z Google Sheets
- 2.11. Wczytywanie danych z kubełka S3
- 2.12. Wczytywanie danych nieposiadających struktury
3. Przygotowywanie danych
- 3.0. Wprowadzenie
- 3.1. Tworzenie ramki danych
- 3.2. Opisywanie danych
- 3.3. Poruszanie się po ramce danych
- 3.4. Pobieranie wierszy na podstawie pewnych warunków
- 3.5. Sortowanie wartości
- 3.6. Zastępowanie wartości
- 3.7. Zmiana nazwy kolumny
- 3.8. Znajdowanie wartości minimalnej, maksymalnej, sumy, średniej i liczby elementów w kolumnie
- 3.9. Znajdowanie unikatowych wartości
- 3.10. Obsługa brakujących wartości
- 3.11. Usuwanie kolumn
- 3.12. Usuwanie wiersza
- 3.13. Usuwanie powielonych wierszy
- 3.14. Grupowanie wierszy według wartości
- 3.15. Grupowanie wierszy według czasu
- 3.16. Agregowanie operacji i danych statystycznych
- 3.17. Iterowanie przez kolumnę
- 3.18. Wywoływanie funkcji dla wszystkich elementów kolumny
- 3.19. Wywoływanie funkcji dla grupy
- 3.20. Konkatenacja obiektów typu DataFrame
- 3.21. Złączanie obiektów typu DataFrame
4. Obsługa danych liczbowych
- 4.0. Wprowadzenie
- 4.1. Przeskalowywanie cechy
- 4.2. Standaryzowanie cechy
- 4.3. Normalizowanie obserwacji
- 4.4. Generowanie cech wielomianowych i interakcji
- 4.5. Transformacja cech
- 4.6. Wykrywanie elementów odstających
- 4.7. Obsługa elementów odstających
- 4.8. Dyskretyzacja cech
- 4.9. Grupowanie obserwacji przy użyciu klastra
- 4.10. Usuwanie obserwacji, w których brakuje wartości
- 4.11. Uzupełnianie brakujących wartości
5. Obsługa danych kategoryzujących
- 5.0. Wprowadzenie
- 5.1. Kodowanie nominalnych cech kategoryzujących
- 5.2. Kodowanie porządkowych cech kategoryzujących
- 5.3. Kodowanie słowników cech
- 5.4. Wstawianie brakujących wartości klas
- 5.5. Obsługa niezrównoważonych klas
6. Obsługa tekstu
- 6.0. Wprowadzenie
- 6.1. Oczyszczanie tekstu
- 6.2. Przetwarzanie i oczyszczanie danych HTML
- 6.3. Usuwanie znaku przestankowego
- 6.4. Tokenizacja tekstu
- 6.5. Usuwanie słów o małym znaczeniu
- 6.6. Stemming słów
- 6.7. Oznaczanie części mowy
- 6.8. Rozpoznawanie nazwanych jednostek
- 6.9. Kodowanie tekstu za pomocą modelu worka słów
- 6.10. Określanie wagi słów
- 6.11. Używanie wektorów tekstu do obliczania podobieństwa tekstu w zapytaniu wyszukiwania
- 6.12. Używanie klasyfikatora analizy sentymentu
7. Obsługa daty i godziny
- 7.0. Wprowadzenie
- 7.1. Konwertowanie ciągu tekstowego na datę
- 7.2. Obsługa stref czasowych
- 7.3. Pobieranie daty i godziny
- 7.4. Podział danych daty na wiele cech
- 7.5. Obliczanie różnicy między datami
- 7.6. Kodowanie dni tygodnia
- 7.7. Tworzenie cechy opóźnionej w czasie
- 7.8. Użycie okien upływającego czasu
- 7.9. Obsługa brakujących danych w serii danych zawierających wartości daty i godziny
8. Obsługa obrazów
- 8.0. Wprowadzenie
- 8.1. Wczytywanie obrazu
- 8.2. Zapisywanie obrazu
- 8.3. Zmiana wielkości obrazu
- 8.4. Kadrowanie obrazu
- 8.5. Rozmywanie obrazu
- 8.6. Wyostrzanie obrazu
- 8.7. Zwiększanie kontrastu
- 8.8. Izolowanie kolorów
- 8.9. Progowanie obrazu
- 8.10. Usuwanie tła obrazu
- 8.11. Wykrywanie krawędzi
- 8.12. Wykrywanie narożników w obrazie
- 8.13. Tworzenie cech w uczeniu maszynowym
- 8.14. Użycie histogramu koloru jako cechy
- 8.15. Użycie wytrenowanych embeddingów jako cech
- 8.16. Wykrywanie obiektów za pomocą OpenCV
- 8.17. Klasyfikowanie obrazów za pomocą PyTorch
9. Redukcja wymiarowości za pomocą wyodrębniania cech
- 9.0. Wprowadzenie
- 9.1. Redukowanie cech za pomocą głównych składowych
- 9.2. Redukowanie cech, gdy dane są liniowo nierozłączne
- 9.3. Redukowanie cech przez maksymalizację rozłączności klas
- 9.4. Redukowanie cech za pomocą rozkładu macierzy
- 9.5. Redukowanie cech w rzadkich danych
10. Redukcja wymiarowości za pomocą wyboru cech
- 10.0. Wprowadzenie
- 10.1. Progowanie wariancji cechy liczbowej
- 10.2. Progowanie wariancji cechy binarnej
- 10.3. Obsługa wysoce skorelowanych cech
- 10.4. Usuwanie nieistotnych dla klasyfikacji cech
- 10.5. Rekurencyjne eliminowanie cech
11. Ocena modelu
- 11.0. Wprowadzenie
- 11.1. Modele sprawdzianu krzyżowego
- 11.2. Tworzenie modelu regresji bazowej
- 11.3. Tworzenie modelu klasyfikacji bazowej
- 11.4. Ocena prognoz klasyfikatora binarnego
- 11.5. Ocena progowania klasyfikatora binarnego
- 11.6. Ocena prognoz klasyfikatora wieloklasowego
- 11.7. Wizualizacja wydajności klasyfikatora
- 11.8. Ocena modelu regresji
- 11.9. Ocena modelu klasteryzacji
- 11.10. Definiowanie niestandardowych współczynników oceny modelu
- 11.11. Wizualizacja efektu wywieranego przez wielkość zbioru uczącego
- 11.12. Tworzenie raportu tekstowego dotyczącego współczynnika oceny
- 11.13. Wizualizacja efektu wywieranego przez zmianę wartości hiperparametrów
12. Wybór modelu
- 12.0. Wprowadzenie
- 12.1. Wybór najlepszych modeli przy użyciu wyczerpującego wyszukiwania
- 12.2. Wybór najlepszych modeli za pomocą przeszukiwania losowego
- 12.3. Wybór najlepszych modeli z wielu algorytmów uczenia maszynowego
- 12.4. Wybór najlepszych modeli na etapie przygotowywania danych
- 12.5. Przyspieszanie wyboru modelu za pomocą równoległości
- 12.6. Przyspieszanie wyboru modelu przy użyciu metod charakterystycznych dla algorytmu
- 12.7. Ocena wydajności po wyborze modelu
13. Regresja liniowa
- 13.0. Wprowadzenie
- 13.1. Wyznaczanie linii
- 13.2. Obsługa wpływu interakcji
- 13.3. Wyznaczanie zależności nieliniowej
- 13.4. Redukowanie wariancji za pomocą regularyzacji
- 13.5. Redukowanie cech za pomocą regresji metodą LASSO
14. Drzewa i lasy
- 14.0. Wprowadzenie
- 14.1. Trenowanie klasyfikatora drzewa decyzyjnego
- 14.2. Trenowanie regresora drzewa decyzyjnego
- 14.3. Wizualizacja modelu drzewa decyzyjnego
- 14.4. Trenowanie klasyfikatora losowego lasu
- 14.5. Trenowanie regresora losowego lasu
- 14.6. Ocena losowego lasu za pomocą estymatora błędu out-of-bag
- 14.7. Identyfikacja ważnych cech w losowych lasach
- 14.8. Wybór ważnych cech w losowym lesie
- 14.9. Obsługa niezrównoważonych klas
- 14.10. Kontrolowanie wielkości drzewa
- 14.11. Poprawa wydajności za pomocą wzmocnienia
- 14.12. Wytrenowanie modelu XGBoost
- 14.13. Poprawianie wydajności w czasie rzeczywistym za pomocą LightGBM
15. Algorytm k najbliższych sąsiadów
- 15.0. Wprowadzenie
- 15.1. Wyszukiwanie najbliższych sąsiadów obserwacji
- 15.2. Tworzenie klasyfikatora k najbliższych sąsiadów
- 15.3. Ustalanie najlepszej wielkości sąsiedztwa
- 15.4. Tworzenie klasyfikatora najbliższych sąsiadów opartego na promieniu
- 15.5. Wyszukiwanie przybliżonych najbliższych sąsiadów
- 15.6. Ocena przybliżonych najbliższych sąsiadów
16. Regresja logistyczna
- 16.0. Wprowadzenie
- 16.1. Trenowanie klasyfikatora binarnego
- 16.2. Trenowanie klasyfikatora wieloklasowego
- 16.3. Redukcja wariancji poprzez regularyzację
- 16.4. Trenowanie klasyfikatora na bardzo dużych danych
- 16.5. Obsługa niezrównoważonych klas
17. Maszyna wektora nośnego
- 17.0. Wprowadzenie
- 17.1. Trenowanie klasyfikatora liniowego
- 17.2. Obsługa liniowo nierozdzielnych klas przy użyciu funkcji jądra
- 17.3. Określanie prognozowanego prawdopodobieństwa
- 17.4. Identyfikacja wektorów nośnych
- 17.5. Obsługa niezrównoważonych klas
18. Naiwny klasyfikator bayesowski
- 18.0. Wprowadzenie
- 18.1. Trenowanie klasyfikatora dla cech ciągłych
- 18.2. Trenowanie klasyfikatora dla cech dyskretnych lub liczebnych
- 18.3. Trenowanie naiwnego klasyfikatora bayesowskiego dla cech binarnych
- 18.4. Kalibrowanie prognozowanego prawdopodobieństwa
19. Klasteryzacja
- 19.0. Wprowadzenie
- 19.1. Klasteryzacja za pomocą k średnich
- 19.2. Przyspieszanie klasteryzacji za pomocą k średnich
- 19.3. Klasteryzacja za pomocą algorytmu meanshift
- 19.4. Klasteryzacja za pomocą algorytmu DBSCAN
- 19.5. Klasteryzacja za pomocą łączenia hierarchicznego
20. Tensory w PyTorch
- 20.0. Wprowadzenie
- 20.1. Utworzenie tensora
- 20.2. Utworzenie tensora z poziomu NumPy
- 20.3. Utworzenie tensora rzadkiego
- 20.4. Wybór elementów tensora
- 20.5. Opisanie tensora
- 20.6. Przeprowadzanie operacji na elementach tensora
- 20.7. Wyszukiwanie wartości minimalnej i maksymalnej
- 20.8. Zmiana kształtu tensora
- 20.9. Transponowanie tensora
- 20.10. Spłaszczanie tensora
- 20.11. Obliczanie iloczynu skalarnego
- 20.12. Mnożenie tensorów
21. Sieci neuronowe
- 21.0. Wprowadzenie
- 21.1. Używanie silnika Autograd frameworka PyTorch
- 21.2. Przygotowywanie danych dla sieci neuronowej
- 21.3. Projektowanie sieci neuronowej
- 21.4. Trenowanie klasyfikatora binarnego
- 21.5. Trenowanie klasyfikatora wieloklasowego
- 21.6. Trenowanie regresora
- 21.7. Generowanie prognoz
- 21.8. Wizualizacja historii trenowania
- 21.9. Redukcja nadmiernego dopasowania za pomocą regularyzacji wagi
- 21.10. Redukcja nadmiernego dopasowania za pomocą techniki wcześniejszego zakończenia procesu uczenia
- 21.11. Redukcja nadmiernego dopasowania za pomocą techniki porzucenia
- 21.12. Zapisywanie postępu modelu uczącego
- 21.13. Dostrajanie sieci neuronowej
- 21.14. Wizualizacja sieci neuronowej
22. Sieci neuronowe dla danych pozbawionych struktury
- 22.0. Wprowadzenie
- 22.1. Wytrenowanie sieci neuronowej na potrzeby klasyfikacji obrazów
- 22.2. Wytrenowanie sieci neuronowej na potrzeby klasyfikacji tekstu
- 22.3. Dostrajanie wytrenowanego modelu na potrzeby klasyfikacji obrazu
- 22.4. Dostrajanie wytrenowanego modelu na potrzeby klasyfikacji tekstu
23. Zapisywanie, wczytywanie i udostępnianie wytrenowanych modeli
- 23.0. Wprowadzenie
- 23.1. Zapisywanie i wczytywanie modelu biblioteki scikit-learn
- 23.2. Zapisywanie i wczytywanie modelu biblioteki TensorFlow
- 23.3. Zapisywanie i wczytywanie modelu PyTorch
- 23.4. Udostępnianie modeli scikit-learn
- 23.5. Udostępnianie modeli TensorFlow
- 23.6. Udostępnianie modeli PyTorch za pomocą Seldon
- Назва: Uczenie maszynowe w Pythonie. Receptury. Od przygotowania danych do deep learningu. Wydanie II
- Автор: Kyle Gallatin, Chris Albon
- Оригінальна назва: Machine Learning with Python Cookbook: Practical Solutions from Preprocessing to Deep Learning, 2nd Edition
- Переклад: Robert Górczyński
- ISBN: 978-83-289-0812-3, 9788328908123
- Дата видання: 2024-04-23
- Формат: Eлектронна книга
- Ідентифікатор видання: uczma2
- Видавець: Helion