Kategorie
Ebooki
-
Biznes i ekonomia
- Bitcoin
- Bizneswoman
- Coaching
- Controlling
- E-biznes
- Ekonomia
- Finanse
- Giełda i inwestycje
- Kompetencje osobiste
- Komputer w biurze
- Komunikacja i negocjacje
- Mała firma
- Marketing
- Motywacja
- Multimedialne szkolenia
- Nieruchomości
- Perswazja i NLP
- Podatki
- Polityka społeczna
- Poradniki
- Prezentacje
- Przywództwo
- Public Relation
- Raporty, analizy
- Sekret
- Social Media
- Sprzedaż
- Start-up
- Twoja kariera
- Zarządzanie
- Zarządzanie projektami
- Zasoby ludzkie (HR)
-
Dla dzieci
-
Dla młodzieży
-
Edukacja
-
Encyklopedie, słowniki
-
E-prasa
- Architektura i wnętrza
- BHP
- Biznes i Ekonomia
- Dom i ogród
- E-Biznes
- Finanse
- Finanse osobiste
- Firma
- Fotografia
- Informatyka
- Kadry i płace
- Komputery, Excel
- Księgowość
- Kultura i literatura
- Naukowe i akademickie
- Ochrona środowiska
- Opiniotwórcze
- Oświata
- Podatki
- Podróże
- Psychologia
- Religia
- Rolnictwo
- Rynek książki i prasy
- Transport i Spedycja
- Zdrowie i uroda
-
Historia
-
Informatyka
- Aplikacje biurowe
- Bazy danych
- Bioinformatyka
- Biznes IT
- CAD/CAM
- Digital Lifestyle
- DTP
- Elektronika
- Fotografia cyfrowa
- Grafika komputerowa
- Gry
- Hacking
- Hardware
- IT w ekonomii
- Pakiety naukowe
- Podręczniki szkolne
- Podstawy komputera
- Programowanie
- Programowanie mobilne
- Serwery internetowe
- Sieci komputerowe
- Start-up
- Systemy operacyjne
- Sztuczna inteligencja
- Technologia dla dzieci
- Webmasterstwo
-
Inne
-
Języki obce
-
Kultura i sztuka
-
Lektury szkolne
-
Literatura
- Antologie
- Ballada
- Biografie i autobiografie
- Dla dorosłych
- Dramat
- Dzienniki, pamiętniki, listy
- Epos, epopeja
- Esej
- Fantastyka i science-fiction
- Felietony
- Fikcja
- Humor, satyra
- Inne
- Klasyczna
- Kryminał
- Literatura faktu
- Literatura piękna
- Mity i legendy
- Nobliści
- Nowele
- Obyczajowa
- Okultyzm i magia
- Opowiadania
- Pamiętniki
- Podróże
- Poemat
- Poezja
- Polityka
- Popularnonaukowa
- Powieść
- Powieść historyczna
- Proza
- Przygodowa
- Publicystyka
- Reportaż
- Romans i literatura obyczajowa
- Sensacja
- Thriller, Horror
- Wywiady i wspomnienia
-
Nauki przyrodnicze
-
Nauki społeczne
-
Podręczniki szkolne
-
Popularnonaukowe i akademickie
- Archeologia
- Bibliotekoznawstwo
- Filmoznawstwo
- Filologia
- Filologia polska
- Filozofia
- Finanse i bankowość
- Geografia
- Gospodarka
- Handel. Gospodarka światowa
- Historia i archeologia
- Historia sztuki i architektury
- Kulturoznawstwo
- Lingwistyka
- Literaturoznawstwo
- Logistyka
- Matematyka
- Medycyna
- Nauki humanistyczne
- Pedagogika
- Pomoce naukowe
- Popularnonaukowa
- Pozostałe
- Psychologia
- Socjologia
- Teatrologia
- Teologia
- Teorie i nauki ekonomiczne
- Transport i spedycja
- Wychowanie fizyczne
- Zarządzanie i marketing
-
Poradniki
-
Poradniki do gier
-
Poradniki zawodowe i specjalistyczne
-
Prawo
- BHP
- Historia
- Kodeks drogowy. Prawo jazdy
- Nauki prawne
- Ochrona zdrowia
- Ogólne, kompendium wiedzy
- Podręczniki akademickie
- Pozostałe
- Prawo budowlane i lokalowe
- Prawo cywilne
- Prawo finansowe
- Prawo gospodarcze
- Prawo gospodarcze i handlowe
- Prawo karne
- Prawo karne. Przestępstwa karne. Kryminologia
- Prawo międzynarodowe
- Prawo międzynarodowe i zagraniczne
- Prawo ochrony zdrowia
- Prawo oświatowe
- Prawo podatkowe
- Prawo pracy i ubezpieczeń społecznych
- Prawo publiczne, konstytucyjne i administracyjne
- Prawo rodzinne i opiekuńcze
- Prawo rolne
- Prawo socjalne, prawo pracy
- Prawo Unii Europejskiej
- Przemysł
- Rolne i ochrona środowiska
- Słowniki i encyklopedie
- Zamówienia publiczne
- Zarządzanie
-
Przewodniki i podróże
- Afryka
- Albumy
- Ameryka Południowa
- Ameryka Środkowa i Północna
- Australia, Nowa Zelandia, Oceania
- Austria
- Azja
- Bałkany
- Bliski Wschód
- Bułgaria
- Chiny
- Chorwacja
- Czechy
- Dania
- Egipt
- Estonia
- Europa
- Francja
- Góry
- Grecja
- Hiszpania
- Holandia
- Islandia
- Litwa
- Łotwa
- Mapy, Plany miast, Atlasy
- Miniprzewodniki
- Niemcy
- Norwegia
- Podróże aktywne
- Polska
- Portugalia
- Pozostałe
- Przewodniki po hotelach i restauracjach
- Rosja
- Rumunia
- Słowacja
- Słowenia
- Szwajcaria
- Szwecja
- Świat
- Turcja
- Ukraina
- Węgry
- Wielka Brytania
- Włochy
-
Psychologia
- Filozofie życiowe
- Kompetencje psychospołeczne
- Komunikacja międzyludzka
- Mindfulness
- Ogólne
- Perswazja i NLP
- Psychologia akademicka
- Psychologia duszy i umysłu
- Psychologia pracy
- Relacje i związki
- Rodzicielstwo i psychologia dziecka
- Rozwiązywanie problemów
- Rozwój intelektualny
- Sekret
- Seksualność
- Uwodzenie
- Wygląd i wizerunek
- Życiowe filozofie
-
Religia
-
Sport, fitness, diety
-
Technika i mechanika
Audiobooki
-
Biznes i ekonomia
- Bitcoin
- Bizneswoman
- Coaching
- Controlling
- E-biznes
- Ekonomia
- Finanse
- Giełda i inwestycje
- Kompetencje osobiste
- Komunikacja i negocjacje
- Mała firma
- Marketing
- Motywacja
- Nieruchomości
- Perswazja i NLP
- Podatki
- Poradniki
- Prezentacje
- Przywództwo
- Public Relation
- Sekret
- Social Media
- Sprzedaż
- Start-up
- Twoja kariera
- Zarządzanie
- Zarządzanie projektami
- Zasoby ludzkie (HR)
-
Dla dzieci
-
Dla młodzieży
-
Edukacja
-
Encyklopedie, słowniki
-
Historia
-
Informatyka
-
Inne
-
Języki obce
-
Kultura i sztuka
-
Lektury szkolne
-
Literatura
- Antologie
- Ballada
- Biografie i autobiografie
- Dla dorosłych
- Dramat
- Dzienniki, pamiętniki, listy
- Epos, epopeja
- Esej
- Fantastyka i science-fiction
- Felietony
- Fikcja
- Humor, satyra
- Inne
- Klasyczna
- Kryminał
- Literatura faktu
- Literatura piękna
- Mity i legendy
- Nobliści
- Nowele
- Obyczajowa
- Okultyzm i magia
- Opowiadania
- Pamiętniki
- Podróże
- Poezja
- Polityka
- Popularnonaukowa
- Powieść
- Powieść historyczna
- Proza
- Przygodowa
- Publicystyka
- Reportaż
- Romans i literatura obyczajowa
- Sensacja
- Thriller, Horror
- Wywiady i wspomnienia
-
Nauki przyrodnicze
-
Nauki społeczne
-
Popularnonaukowe i akademickie
-
Poradniki
-
Poradniki zawodowe i specjalistyczne
-
Prawo
-
Przewodniki i podróże
-
Psychologia
- Filozofie życiowe
- Komunikacja międzyludzka
- Mindfulness
- Ogólne
- Perswazja i NLP
- Psychologia akademicka
- Psychologia duszy i umysłu
- Psychologia pracy
- Relacje i związki
- Rodzicielstwo i psychologia dziecka
- Rozwiązywanie problemów
- Rozwój intelektualny
- Sekret
- Seksualność
- Uwodzenie
- Wygląd i wizerunek
- Życiowe filozofie
-
Religia
-
Sport, fitness, diety
-
Technika i mechanika
Kursy video
-
Bazy danych
-
Big Data
-
Biznes, ekonomia i marketing
-
Cyberbezpieczeństwo
-
Data Science
-
DevOps
-
Dla dzieci
-
Elektronika
-
Grafika/Wideo/CAX
-
Gry
-
Microsoft Office
-
Narzędzia programistyczne
-
Programowanie
-
Rozwój osobisty
-
Sieci komputerowe
-
Systemy operacyjne
-
Testowanie oprogramowania
-
Urządzenia mobilne
-
UX/UI
-
Web development
-
Zarządzanie
Podcasty
- Ebooki
- Big data
- Uczenie maszynowe
- Uczenie maszynowe w Pythonie. Leksykon kieszonkowy
Szczegóły ebooka
Uczenie maszynowe i nauka o danych są dziś ogromnie popularne. Dziedziny te szybko się rozwijają, a poszczególne techniki uczenia maszynowego znajdują coraz więcej różnorodnych zastosowań. Wiedza, którą można uzyskać dzięki odpowiedniemu przygotowaniu danych i ich eksploracji, często jest bezcenna. Umiejętność ich analizy oraz wiedza o możliwych sposobach rozwiązywania problemów napotykanych podczas uczenia maszynowego są więc dużymi atutami i mogą być wykorzystywane w wielu gałęziach nauki, techniki i biznesu.
Z tego zwięzłego przewodnika po technikach uczenia maszynowego opartego na strukturalnych danych skorzystają programiści, badacze, osoby zajmujące się nauką o danych oraz twórcy systemów sztucznej inteligencji. Znalazł się tu wyczerpujący opis procesu uczenia maszynowego i klasyfikacji danych strukturalnych. Przedstawiono też metody klastrowania danych, analizy regresji, redukcji wymiarowości oraz inne ważne zagadnienia. Prezentowane treści zostały zilustrowane uwagami, tabelami i przykładami kodu. Nie zabrakło opisu przydatnych bibliotek, niezwykle użytecznych w pracy analityka danych. W efekcie książka pozwala na szybkie rozwiązywanie różnego rodzaju problemów związanych z przetwarzaniem danych strukturalnych.
W książce między innymi:
- klasyfikacja, oczyszczanie i uzupełnianie braków danych
- eksploracyjna analiza danych i dobór modelu danych
- przykłady analiz regresji
- redukcja wymiarowości
- potoki w bibliotece scikit-learn
Uczenie maszynowe: nowy wymiar analizy danych!
Przedmowa 9
- Czego należy oczekiwać? 9
- Dla kogo jest ta książka? 10
- Konwencje typograficzne 10
- Przykłady kodów 11
- Podziękowania 11
Rozdział 1. Wprowadzenie 13
- Wykorzystywane biblioteki 13
- Instalowanie bibliotek za pomocą programu pip 15
- Instalowanie bibliotek za pomocą programu conda 16
Rozdział 2. Schemat procesu uczenia maszynowego 19
Rozdział 3. Klasyfikacja danych: baza Titanic 21
- Proponowany schemat projektu 21
- Importowane biblioteki 21
- Zadanie pytania 22
- Stosowana terminologia 22
- Zebranie danych 24
- Oczyszczanie danych 25
- Zdefiniowanie cech 30
- Próbkowanie danych 32
- Imputacja danych 32
- Normalizacja danych 33
- Refaktoryzacja kodu 34
- Model odniesienia 35
- Różne rodziny algorytmów 35
- Kontaminacja modeli 37
- Utworzenie modelu 37
- Ocena modelu 38
- Optymalizacja modelu 39
- Macierz pomyłek 40
- Krzywa ROC 40
- Krzywa uczenia 42
- Wdrożenie modelu 43
Rozdział 4. Brakujące dane 45
- Badanie braków danych 45
- Pomijanie braków 49
- Imputacja danych 49
- Tworzenie kolumn ze wskaźnikami 50
Rozdział 5. Oczyszczanie danych 51
- Nazwy kolumn 51
- Uzupełnianie brakujących wartości 52
Rozdział 6. Badanie danych 53
- Ilość danych 53
- Statystyki podsumowujące 53
- Histogram 54
- Wykres punktowy 56
- Wykres łączony 57
- Macierz wykresów 59
- Wykresy pudełkowy i skrzypcowy 60
- Porównywanie dwóch cech porządkowych 61
- Korelacja 63
- Wykres RadViz 66
- Wykres współrzędnych równoległych 68
Rozdział 7. Wstępne przetwarzanie danych 71
- Normalizacja 71
- Skalowanie w zadanym zakresie 72
- Kolumny wskaźnikowe 73
- Kodowanie etykietowe 74
- Kodowanie częstościowe 74
- Wyodrębnianie kategorii danych z ciągów znaków 75
- Inne rodzaje kodowania kolumn kategorialnych 76
- Przetwarzanie dat 78
- Tworzenie cechy col_na 79
- Ręczne przetwarzanie cech 79
Rozdział 8. Wybieranie cech 81
- Skorelowane kolumny danych 81
- Regresja lasso 83
- Rekurencyjna eliminacja cech 85
- Informacja wzajemna 86
- Analiza głównych składowych 87
- Ważność cech 87
Rozdział 9. Niezrównoważone klasy danych 89
- Wybór innego wskaźnika 89
- Algorytmy drzewa decyzyjnego i metody zespołowe 89
- Penalizacja modeli 89
- Próbkowanie w górę mniej licznych klas 90
- Generowanie danych w mniej licznych klasach 91
- Próbkowanie w dół bardziej licznych klas 91
- Próbkowanie w górę, a potem w dół 92
Rozdział 10. Klasyfikacja 93
- Regresja logistyczna 94
- Naiwny klasyfikator Bayesa 98
- Maszyna wektorów nośnych 99
- K najbliższych sąsiadów 102
- Drzewo decyzyjne 104
- Las losowy 111
- XGBoost 115
- Model LightGBM z gradientowym wzmacnianiem 124
- TPOT 128
Rozdział 11. Wybór modelu 133
- Krzywa weryfikacji 133
- Krzywa uczenia 134
Rozdział 12. Wskaźniki i ocena klasyfikacji 137
- Tablica pomyłek 137
- Wskaźniki 140
- Dokładność 141
- Czułość 141
- Precyzja 141
- F1 142
- Raport klasyfikacyjny 142
- Krzywa ROC 142
- Krzywa precyzja-czułość 144
- Krzywa skumulowanych zysków 145
- Krzywa podniesienia 147
- Równowaga klas 149
- Błąd prognozowania klas 150
- Próg dyskryminacji 150
Rozdział 13. Interpretacja modelu 153
- Współczynniki regresji 153
- Ważność cech 153
- Pakiet LIME 153
- Interpretacja drzewa 155
- Wykres częściowych zależności 156
- Modele zastępcze 158
- Pakiet Shapley 159
Rozdział 14. Regresja 163
- Model odniesienia 165
- Regresja liniowa 165
- Maszyna wektorów nośnych 168
- K najbliższych sąsiadów 170
- Drzewo decyzyjne 172
- Las losowy 177
- XGBoost 180
- LightGBM 185
Rozdział 15. Wskaźniki i ocena regresji 191
- Wskaźniki 191
- Wykres reszt 193
- Heteroskedastyczność 194
- Rozkład normalny reszt 195
- Wykres błędów prognozowanych wyników 196
Rozdział 16. Interpretacja modelu regresyjnego 199
- Shapley 199
Rozdział 17. Redukcja wymiarowości danych 205
- Analiza głównych składowych 205
- UMAP 221
- t-SNE 226
- PHATE 230
Rozdział 18. Klastrowanie danych 233
- Algorytm k-średnich 233
- Klastrowanie aglomeracyjne (hierarchiczne) 239
- Interpretowanie klastrów 241
Rozdział 19. Potoki 247
- Potok klasyfikacyjny 247
- Potok regresyjny 249
- Potok analizy głównych składowych 249
- Tytuł: Uczenie maszynowe w Pythonie. Leksykon kieszonkowy
- Autor: Matt Harrison
- Tytuł oryginału: Machine Learning Pocket Reference: Working with Structured Data
- Tłumaczenie: Andrzej Watrak
- ISBN: 978-83-283-6559-9, 9788328365599
- Data wydania: 2020-06-16
- Format: Ebook
- Identyfikator pozycji: umpylk
- Wydawca: Helion