Ebooki
833
Ebook

Advanced C++ Programming Cookbook. Become an expert C++ programmer by mastering concepts like templates, concurrency, and type deduction

Dr. Rian Quinn

If you think you've mastered C++ and know everything it takes to write robust applications, you'll be in for a surprise. With this book, you'll gain comprehensive insights into C++, covering exclusive tips and interesting techniques to enhance your app development process.You'll kick off with the basic principles of library design and development, which will help you understand how to write reusable and maintainable code. You'll then discover the importance of exception safety, and how you can avoid unexpected errors or bugs in your code. The book will take you through the modern elements of C++, such as move semantics, type deductions, and coroutines. As you advance, you'll delve into template programming - the standard tool for most library developers looking to achieve high code reusability. You'll explore the STL and learn how to avoid common pitfalls while implementing templates. Later, you'll learn about the problems of multithreaded programming such as data races, deadlocks, and thread starvation. You'll also learn high-performance programming by using benchmarking tools and libraries. Finally, you'll discover advanced techniques for debugging and testing to ensure code reliability.By the end of this book, you'll have become an expert at C++ programming and will have gained the skills to solve complex development problems with ease.

834
Ebook

Advanced Deep Learning with Keras. Apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more

Rowel Atienza

Recent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like.Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques.The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.

835
Ebook

Advanced Deep Learning with Python. Design and implement advanced next-generation AI solutions using TensorFlow and PyTorch

Ivan Vasilev

In order to build robust deep learning systems, you’ll need to understand everything from how neural networks work to training CNN models. In this book, you’ll discover newly developed deep learning models, methodologies used in the domain, and their implementation based on areas of application. You’ll start by understanding the building blocks and the math behind neural networks, and then move on to CNNs and their advanced applications in computer vision. You'll also learn to apply the most popular CNN architectures in object detection and image segmentation. Further on, you’ll focus on variational autoencoders and GANs. You’ll then use neural networks to extract sophisticated vector representations of words, before going on to cover various types of recurrent networks, such as LSTM and GRU. You’ll even explore the attention mechanism to process sequential data without the help of recurrent neural networks (RNNs). Later, you’ll use graph neural networks for processing structured data, along with covering meta-learning, which allows you to train neural networks with fewer training samples. Finally, you’ll understand how to apply deep learning to autonomous vehicles.By the end of this book, you’ll have mastered key deep learning concepts and the different applications of deep learning models in the real world.

836
Ebook

Advanced Deep Learning with R. Become an expert at designing, building, and improving advanced neural network models using R

Bharatendra Rai

Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data. Advanced Deep Learning with R will help you understand popular deep learning architectures and their variants in R, along with providing real-life examples for them. This deep learning book starts by covering the essential deep learning techniques and concepts for prediction and classification. You will learn about neural networks, deep learning architectures, and the fundamentals for implementing deep learning with R. The book will also take you through using important deep learning libraries such as Keras-R and TensorFlow-R to implement deep learning algorithms within applications. You will get up to speed with artificial neural networks, recurrent neural networks, convolutional neural networks, long short-term memory networks, and more using advanced examples. Later, you'll discover how to apply generative adversarial networks (GANs) to generate new images; autoencoder neural networks for image dimension reduction, image de-noising and image correction and transfer learning to prepare, define, train, and model a deep neural network. By the end of this book, you will be ready to implement your knowledge and newly acquired skills for applying deep learning algorithms in R through real-world examples.

837
Ebook

Advanced Deep Learning with TensorFlow 2 and Keras. Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more - Second Edition

Rowel Atienza

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects.Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques.Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance.Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.

838
Ebook

Advanced Elasticsearch 7.0. A practical guide to designing, indexing, and querying advanced distributed search engines

Wai Tak Wong

Building enterprise-grade distributed applications and executing systematic search operations call for a strong understanding of Elasticsearch and expertise in using its core APIs and latest features. This book will help you master the advanced functionalities of Elasticsearch and understand how you can develop a sophisticated, real-time search engine confidently. In addition to this, you'll also learn to run machine learning jobs in Elasticsearch to speed up routine tasks.You'll get started by learning to use Elasticsearch features on Hadoop and Spark and make search results faster, thereby improving the speed of query results and enhancing the customer experience. You'll then get up to speed with performing analytics by building a metrics pipeline, defining queries, and using Kibana for intuitive visualizations that help provide decision-makers with better insights. The book will later guide you through using Logstash with examples to collect, parse, and enrich logs before indexing them in Elasticsearch.By the end of this book, you will have comprehensive knowledge of advanced topics such as Apache Spark support, machine learning using Elasticsearch and scikit-learn, and real-time analytics, along with the expertise you need to increase business productivity, perform analytics, and get the very best out of Elasticsearch.

839
Ebook

Advanced Express Web Application Development. For experienced JavaScript developers this book is all you need to build highly scalable, robust applications using Express. It takes you step by step through the development of a single page application so you learn empirically

Andrew Keig

Building an Express application that is reliable, robust, maintainable, testable, and can scale beyond a single server requires a bit of extra thought and effort. Express applications that need to survive in a production environment will need to reach out to the Node ecosystem and beyond, for support.You will start by laying the foundations of your software development journey, as you drive-out features under test. You will move on quickly to expand on your existing knowledge, learning how to create a web API and a consuming client. You will then introduce a real-time element in your application.Following on from this, you will begin a process of incrementally improving your application as you tackle security, introduce SSL support, and how to handle security vulnerabilities. Next, the book will take you through the process of scaling and then decoupling your application. Finally, you will take a look at various ways you can improve your application's performance and reliability.

840
Ebook

Advanced Infrastructure Penetration Testing. Defend your systems from methodized and proficient attackers

Chiheb Chebbi

It has always been difficult to gain hands-on experience and a comprehensive understanding of advanced penetration testing techniques and vulnerability assessment and management. This book will be your one-stop solution to compromising complex network devices and modern operating systems. This book provides you with advanced penetration testing techniques that will help you exploit databases, web and application servers, switches or routers, Docker, VLAN, VoIP, and VPN.With this book, you will explore exploitation abilities such as offensive PowerShell tools and techniques, CI servers, database exploitation, Active Directory delegation, kernel exploits, cron jobs, VLAN hopping, and Docker breakouts. Moving on, this book will not only walk you through managing vulnerabilities, but will also teach you how to ensure endpoint protection. Toward the end of this book, you will also discover post-exploitation tips, tools, and methodologies to help your organization build an intelligent security system.By the end of this book, you will have mastered the skills and methodologies needed to breach infrastructures and provide complete endpoint protection for your system.