Autor: Lior Gazit
1
Ebook

Mastering NLP from Foundations to LLMs. Apply advanced rule-based techniques to LLMs and solve real-world business problems using Python

Lior Gazit, Meysam Ghaffari, Asha Saxena

Do you want to master Natural Language Processing (NLP) but don’t know where to begin? This book will give you the right head start. Written by leaders in machine learning and NLP, Mastering NLP from Foundations to LLMs provides an in-depth introduction to techniques. Starting with the mathematical foundations of machine learning (ML), you’ll gradually progress to advanced NLP applications such as large language models (LLMs) and AI applications. You’ll get to grips with linear algebra, optimization, probability, and statistics, which are essential for understanding and implementing machine learning and NLP algorithms. You’ll also explore general machine learning techniques and find out how they relate to NLP. Next, you’ll learn how to preprocess text data, explore methods for cleaning and preparing text for analysis, and understand how to do text classification. You’ll get all of this and more along with complete Python code samples.By the end of the book, the advanced topics of LLMs’ theory, design, and applications will be discussed along with the future trends in NLP, which will feature expert opinions. You’ll also get to strengthen your practical skills by working on sample real-world NLP business problems and solutions.

2
Ebook

Zaawansowane techniki przetwarzania języka naturalnego. Od podstaw do modeli LLM i zastosowań biznesowych w Pythonie

Lior Gazit, Meysam Ghaffari

Uczenie maszynowe i duże modele językowe rewolucjonizują biznes i nasze codzienne życie. Potencjał tych innowacji jest trudny do oszacowania: modele LLM stały się wiodącym trendem w tworzeniu aplikacji i analizie danych. Integrowanie zaawansowanych modeli z systemami produkcyjnymi bywa jednak często wymagającym, a nawet niewdzięcznym zadaniem. Na szczęście dzięki tej książce poradzisz sobie z takimi wyzwaniami! Najpierw zapoznasz się z matematycznymi podstawami algorytmów ML i NLP. Zaznajomisz się również z ogólnymi technikami uczenia maszynowego i dowiesz się, w jakim stopniu dotyczą one dużych modeli językowych. Kolejnym zagadnieniem będzie przetwarzanie danych tekstowych, w tym metody przygotowywania tekstu do analizy, po czym przyswoisz zasady klasyfikowania tekstu. Ponadto poznasz zaawansowane aspekty teorii, projektowania i stosowania LLM, wreszcie ― przyszłe trendy w NLP. Aby zdobyć praktyczne umiejętności, będziesz ćwiczyć na przykładach rzeczywistych zagadnień biznesowych i rozwiązań NLP. W książce: podstawy matematyczne uczenia maszynowego i NLP zaawansowane techniki przetwarzania wstępnego i analizy danych tekstowych projektowanie systemów ML i NLP w Pythonie przetwarzanie tekstu z użyciem metod uczenia głębokiego modele LLM i ich implementacja w różnych aplikacjach AI trendy w NLP i potencjał tej technologii Odkryj przyszłe trendy w NLP widziane oczami ekspertów!