Autor: Luca Massaron
1
Ebook

Algorytmy dla bystrzaków

John Paul Mueller, Luca Massaron

Zestaw algorytmy z ich zastosowaniami Zdobądź umiejętności posługiwania się algorytmami Naucz się wykorzystywać Pythona do testowania algorytmów Myśl za pomocą algorytmów Ten jasny i przystępny przewodnik pokazuje, w jaki sposób algorytmy wpływają na nasze codzienne życie - od interakcji online po osobistą komunikację. Są również niezwykle ważne, jeśli chodzi o podejmowanie różnego rodzaju decyzji. Jeśli chcesz wiedzieć, jak korzystać z procedur rozwiązywania problemów w prawdziwym świecie, książka Algorytmy dla bystrzaków zagwarantuje Ci doskonałe wprowadzenie do tej fascynującej, wszechobecnej dziedziny. W książce: Operacje na danych Projektowanie algorytmów Podstawy teorii grafów Zarządzanie danymi o dużej objętości Upraszczanie złożonych algorytmów

2
Ebook

Large Scale Machine Learning with Python. Click here to enter text

Bastiaan Sjardin, Alberto Boschetti, Luca Massaron

Large Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy. Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python.

3
Ebook

Machine Learning Using TensorFlow Cookbook. Create powerful machine learning algorithms with TensorFlow

Alexia Audevart, Konrad Banachewicz, Luca Massaron

The independent recipes in Machine Learning Using TensorFlow Cookbook will teach you how to perform complex data computations and gain valuable insights into your data. Dive into recipes on training models, model evaluation, sentiment analysis, regression analysis, artificial neural networks, and deep learning - each using Google’s machine learning library, TensorFlow.This cookbook covers the fundamentals of the TensorFlow library, including variables, matrices, and various data sources. You’ll discover real-world implementations of Keras and TensorFlow and learn how to use estimators to train linear models and boosted trees, both for classification and regression.Explore the practical applications of a variety of deep learning architectures, such as recurrent neural networks and Transformers, and see how they can be used to solve computer vision and natural language processing (NLP) problems.With the help of this book, you will be proficient in using TensorFlow, understand deep learning from the basics, and be able to implement machine learning algorithms in real-world scenarios.

4
Ebook

Python Data Science Essentials. A practitioner’s guide covering essential data science principles, tools, and techniques - Third Edition

Alberto Boschetti, Luca Massaron

Fully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn.The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You’ll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost.By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users

5
Ebook

Python Data Science Essentials. Become an efficient data science practitioner by thoroughly understanding the key concepts of Python

Alberto Boschetti, Luca Massaron

The book starts by introducing you to setting up your essential data science toolbox. Then it will guide you across all the data munging and preprocessing phases. This will be done in a manner that explains all the core data science activities related to loading data, transforming and fixing it for analysis, as well as exploring and processing it. Finally, it will complete the overview by presenting you with the main machine learning algorithms, the graph analysis technicalities, and all the visualization instruments that can make your life easier in presenting your results.In this walkthrough, structured as a data science project, you will always be accompanied by clear code and simplified examples to help you understand the underlying mechanics and real-world datasets.

6
Ebook

Python Data Science Essentials. Learn the fundamentals of Data Science with Python - Second Edition

Alberto Boschetti, Luca Massaron

Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users.

7
Ebook

Python. Podstawy nauki o danych. Wydanie II

Alberto Boschetti, Luca Massaron

Nauka o danych jest nową, interdyscyplinarną dziedziną, funkcjonującą na pograniczu algebry liniowej, modelowania statystycznego, lingwistyki komputerowej, uczenia maszynowego oraz metod akumulacji danych. Jest przydatna między innymi dla analityków biznesowych, statystyków, architektów oprogramowania i osób zajmujących się sztuczną inteligencją. Szczególnie praktycznym narzędziem dla tych specjalistów jest język Python, który zapewnia doskonałe środowisko do analizy danych, uczenia maszynowego i algorytmicznego rozwiązywania problemów. Niniejsza książka jest doskonałym wprowadzeniem do nauki o danych. Jej autorzy wskażą Ci prostą i szybką drogę do rozwiązywania różnych problemów z tego obszaru za pomocą Pythona oraz powiązanych z nim pakietów do analizy danych i uczenia maszynowego. Dzięki lekturze przejdziesz przez kolejne etapy modyfikowania i wstępnego przetwarzania danych, poznając przy tym podstawowe operacje związane z wczytywaniem danych, przekształcaniem ich, poprawianiem na potrzeby analiz, eksplorowaniem i przetwarzaniem. Poza podstawami opanujesz też zagadnienia uczenia maszynowego, w tym uczenia głębokiego, techniki analizy grafów oraz wizualizacji danych. Najważniejsze zagadnienia przedstawione w książce: konfiguracja środowiska Jupyter Notebook najważniejsze operacje stosowane w nauce o danych potoki danych i uczenie maszynowe wprowadzenie do grafów i wizualizacje biblioteki i pakiety Pythona służące do badań danych Nauka o danych — fascynujące algorytmy i potężne grafy! Alberto Boschetti specjalizuje się w przetwarzaniu sygnałów i statystyce. Jest doktorem inżynierii telekomunikacyjnej. Zajmuje się przetwarzaniem języków naturalnych, analityką behawioralną, uczeniem maszynowym i przetwarzaniem rozproszonym. Luca Massaron specjalizuje się w statystycznych analizach wieloczynnikowych, uczeniu maszynowym, statystyce, eksploracji danych i algorytmice. Pasjonuje się potencjałem, jaki drzemie w nauce o danych.

8
Ebook

Python: Real World Machine Learning. Take your Python Machine learning skills to the next level

Prateek Joshi, Luca Massaron, John Hearty, Alberto Boschetti, ...

Machine learning is increasingly spreading in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. Machine learning is transforming the way we understand and interact with the world around us.In the first module, Python Machine Learning Cookbook, you will learn how to perform various machine learning tasks using a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms.The second module, Advanced Machine Learning with Python, is designed to take you on a guided tour of the most relevant and powerful machine learning techniques and you’ll acquire a broad set of powerful skills in the area of feature selection and feature engineering.The third module in this learning path, Large Scale Machine Learning with Python, dives into scalable machine learning and the three forms of scalability. It covers the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python.This Learning Path will teach you Python machine learning for the real world. The machine learning techniques covered in this Learning Path are at the forefront of commercial practice.This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products:? Python Machine Learning Cookbook by Prateek Joshi? Advanced Machine Learning with Python by John Hearty? Large Scale Machine Learning with Python by Bastiaan Sjardin, Alberto Boschetti, Luca Massaron