Autor: Mercury Learning and Information
41
Ebook

Data Analytics. Master the Art of Data Analytics with Essential Tools and Techniques

Mercury Learning and Information, Christopher Greco

Data analytics is becoming increasingly important in our daily lives. This book offers a comprehensive view of data analytics skills, starting with a primer on statistics and progressing to the application of these methods. The text includes various formulas and algorithms used in data analytics, which can be applied in any software to achieve desired results. Through numerous demonstrations, it provides clear instruction on how to incorporate data analytics into critical thinking.The book covers a range of methods and techniques, supplemented with case studies specific to project managers, systems engineers, and cybersecurity professionals. Each profession can practice data analytics relevant to their fields. The main objective is to refresh statistical knowledge necessary for building data analytics models and to foster analytical thinking essential across these professions.From introducing statistics and data to reviewing central tendency measures and probability, the book moves to more complex topics like effect size, analysis methods, and data presentation. By the end of the course, readers will be well-versed in data analytics, ready to apply these skills effectively in their respective fields, enhancing decision-making and analytical thinking.

42
Ebook

Database Security. Master the Art of Protecting Your Data with Cutting-Edge Techniques

Mercury Learning and Information, Christopher Diaz

This book provides a comprehensive guide to resolving database security issues during design, implementation, and production phases. It emphasizes specific measures and controls unique to database security, beyond general information security. Topics include account credential management, data access management, and techniques like database normalization, referential integrity, transactions, locks, and check constraints.The importance of database security lies in protecting sensitive data from unauthorized access and ensuring data integrity. This book is designed for professionals, workshops, and self-learners, offering hands-on demonstrations with major Database Management Systems (MySQL, Oracle, and Microsoft SQL Server) across various computing platforms (Linux/UNIX, MacOS, Windows).Starting with an introduction to information, data, and database security, the book covers database design, management, administration, user accounts, privileges, roles, and security controls for confidentiality. It also delves into transactions and data integrity with concurrent access. Each chapter includes questions and projects to reinforce learning and comprehension.

43
Ebook

Data Literacy With Python. A Comprehensive Guide to Understanding and Analyzing Data with Python

Mercury Learning and Information, Oswald Campesato

This book ushers readers into the world of data, emphasizing its importance in modern industries and how its management leads to insightful decision-making. Using Python 3, the book introduces foundational data tasks and progresses to advanced model training concepts. Detailed, step-by-step Python examples help readers master training models, starting with the kNN algorithm and moving to other classifiers with minimal code adjustments. Tools like Sweetviz, Skimpy, Matplotlib, and Seaborn are introduced for hands-on chart and graph rendering.The course begins with working with data, detecting outliers and anomalies, and cleaning datasets. It then introduces statistics and progresses to using Matplotlib and Seaborn for data visualization. Each chapter builds on the previous one, ensuring a comprehensive understanding of data management and analysis.These concepts are crucial for making data-driven decisions. This book transitions readers from basic data handling to advanced model training, blending theoretical knowledge with practical skills. Companion files with source code and data sets enhance the learning experience, making this book an invaluable resource for mastering data science with Python.

44
Ebook

Data Science for IoT Engineers. Master Data Science Techniques and Machine Learning Applications for Innovative IoT Solutions

Mercury Learning and Information, P. G. Madhavan

This book introduces data science to professionals in engineering, physics, mathematics, and related fields. It serves as a workbook with MATLAB code, linking subject knowledge to data science, machine learning, and analytics, with applications in IoT. Part One integrates machine learning, systems theory, linear algebra, digital signal processing, and probability theory. Part Two develops a nonlinear, time-varying machine learning solution for modeling real-life business problems.Understanding data science is crucial for modern applications, particularly in IoT. This book presents a dynamic machine learning solution to handle these complexities. Topics include machine learning, systems theory, linear algebra, digital signal processing, probability theory, state-space formulation, Bayesian estimation, Kalman filter, causality, and digital twins.The journey begins with data science and machine learning, covering systems theory and linear algebra. Advanced concepts like the Kalman filter and Bayesian estimation lead to developing a dynamic machine learning model. The book ends with practical applications using digital twins.

45
Ebook

Data Science Fundamentals Pocket Primer. An Essential Guide to Data Science Concepts and Techniques

Mercury Learning and Information, Oswald Campesato

This book, part of the Pocket Primer series, introduces the basic concepts of data science using Python 3 and other applications. It offers a fast-paced introduction to data analytics, statistics, data visualization, linear algebra, and regular expressions. The book features numerous code samples using Python, NumPy, R, SQL, NoSQL, and Pandas. Companion files with source code and color figures are available.Understanding data science is crucial in today's data-driven world. This book provides a comprehensive introduction, covering key areas such as Python 3, data visualization, and statistical concepts. The practical code samples and hands-on approach make it ideal for beginners and those looking to enhance their skills.The journey begins with working with data, followed by an introduction to probability, statistics, and linear algebra. It then delves into Python, NumPy, Pandas, R, regular expressions, and SQL/NoSQL, concluding with data visualization techniques. This structured approach ensures a solid foundation in data science.

46
Ebook

Data Science Tools. Comprehensive Guide to Mastering Fundamental Data Science and Statistics Techniques

Mercury Learning and Information, Christopher Greco

This book introduces popular data science tools and guides readers on how to use them effectively. It covers data analysis using Microsoft Excel, KNIME, R, and OpenOffice, applying statistical concepts such as confidence intervals, normal distribution, T-Tests, linear regression, histograms, and geographic analysis with real data from Federal Government sources.The course begins with the basics, including importing data and conducting various statistical tests. It progresses to specific methods for each tool, ensuring a comprehensive understanding of data analysis. Capstone exercises provide hands-on experience, reinforcing the concepts learned throughout the book.Understanding these tools and concepts is crucial for effective data analysis. This book takes readers from the basics to advanced statistical methods, combining theoretical insights with practical applications. Companion files with source code and data sets enhance the learning experience, making this book an essential resource for mastering data analysis with popular software applications.

47
Ebook

Data Structures and Program Design Using C++. A Self-Teaching Introduction to Data Structures and C++

Mercury Learning and Information, D. Malhotra, N. Malhotra

This book introduces the fundamentals of data structures using C++ in a self-teaching format. It covers managing large amounts of information, SEO, and creating Internet/Web indexing services. Practical analogies with real-world applications help explain technical concepts. The book includes end-of-chapter exercises such as programming tasks, theoretical questions, and multiple-choice quizzes.The course starts with an introduction to data structures and the C++ language, progressing through arrays, linked lists, queues, searching and sorting, stacks, trees, multi-way search trees, hashing, files, and graphs. Each chapter builds on the previous one, ensuring a comprehensive understanding of data structures.Understanding these concepts is crucial for managing large databases and optimizing web services. This book guides readers from basic to advanced data structure techniques, blending theoretical knowledge with practical skills. Companion files with source code and data sets enhance the learning experience, making this book an essential resource for mastering data structures with C++.

48
Ebook

Data Structures and Program Design Using Java. A Self-Teaching Introduction to Data Structures and Java

Mercury Learning and Information, D. Malhotra, N. Malhotra

This book introduces the fundamentals of data structures using Java in a self-teaching format. It covers managing large databases, effective SEO, and creating web indexing services. Real-world analogies help explain technical concepts. Each chapter includes programming tasks, theoretical questions, and multiple-choice quizzes.The course begins with an introduction to data structures and Java, moving through arrays, linked lists, queues, searching and sorting, stacks, trees, multi-way search trees, hashing, files, and graphs. Each chapter builds on the previous one, ensuring a thorough understanding of data structures.Understanding these concepts is crucial for managing information and optimizing web services. This book guides readers from basic to advanced techniques, blending theory with practical skills. It is an essential resource for mastering data structures with Java, enhanced by end-of-chapter exercises and real-world examples.