Details zum E-Book

Teoria węzłów i związanych z nimi struktur dystrybutywnych

Teoria węzłów i związanych z nimi struktur dystrybutywnych

Józef H. Przytycki

E-book

Jest to drugie wydanie książki z 2012 roku, rozszerzone o dwanaście nowych wykładów, wygłoszonych przez autora w Instytucie Matematyki Uniwersytetu Gdańskiego w latach 2012–2015. Wykłady poprzedza krótki rys historyczny teorii węzłów.

Pierwsze cztery wykłady dotyczą klasycznej teorii węzłów, są omówione węzły kratowe, ruchy Reidemeistera, relacje Taita pomiędzy grafami i splotami, kolorowanie Foxa i kolorowanie kwandlami, wielomian Jonesa i nawias Kauffmana węzłów, wielomian HOMFLYPT i wielomian Kauffmana dwóch zmiennych. Wykłady V–XIII dotyczą w szczególności homologii struktur dystrybutywnych, mających swe korzenie w idei wraka oraz kwandla. Są one szybko się rozwijającym narzędziem w teorii topologii położenia, w tym w klasycznej i wyżej wymiarowej teorii węzłów. Ostatnie osiągnięcia w teorii homologii kwandli i innych struktur rozdzielnych są ważnym składnikiem nowoczesnej teorii węzłów.

Nowe wykłady, XIV–XXV, są ściśle związane z poprzednimi, rozszerzają je, ale nie powtarzają. Szczególnie warto zwrócić uwagę na wykład XXII, jako że dotyczy on nowych, choć elementarnych, wyników, które autor otrzymał w marcu 2014: konstrukcji q-wielomianu drzewa z korzeniem, ściśle związanego z nawiasem Kauffmana dla splotów.

W dodatkach omówiono homologię krat rozdzielnych oraz zagadnienia związane z wieloczłonowymi homologiami struktur rozdzielnych (np. algebr Boole'a).

Przedmowa do wydania pierwszego . . . . . . . . . . . . . 7
Przedmowa do wydania drugiego . . . . . . . . . . . . . . 8
Zarys historii teorii węzłów . . . . . . . . . . . . . . . . 9
I Diagramy splotów, ruchy Reidemeistera i niezmienniki splotów . . . . 18
II Diagramy Taita i kolorowanie Foxa. . . . . . . . . . . . . . 24
III Wielomian Jonesa z nawiasu Kauffmana . . . . . . . . . . . . 31
IV Wielomian HOMFLYPT, wielomian z Dubrownika, kwandle . . . . . 36
V Półgrupa działa ´n dwuargumentowych i porównanie homologii,
bazujących na rozdzielności, z klasycznymi homologiami . . . . . . 41
VI Moduły presymplicjalne i symplicjalne . . . . . . . . . . . . 46
VII Homologie Hochschilda . . . . . . . . . . . . . . . . . 50
VIII Słaby moduł symplicjalny, zdegenerowany podkompleks . . . . . . 54
IX Kategorie i funktory, homologie małych kategorii . . . . . . . . . 59
X Homologie Khovanova, podział barycentryczny . . . . . . . . . 63
XI Monoid operacji dwuargumentowych . . . . . . . . . . . . . 70
XII Jednoczłonowe homologie dystrybutywne . . . . . . . . . . . 74
XIII Zbiory rozdzielne monoidu Gd(X) . . . . . . . . . . . . . . 77
XIV Grafy i wielomiany Listinga . . . . . . . . . . . . . . . . 81
XV Problem czterech kolorów i wielomian chromatyczny . . . . . . . 86
XVI Wielomian dychromatyczny, wielomian Tuttego i nawias Kauffmana . . 89
XVII Ruchy Reidemeistera na diagramach splotów i ruchy r 􀀀Y
na znakowanych płaskich grafach . . . . . . . . . . . . . . 96
XVIII Nieprzemienna płaszczyzna . . . . . . . . . . . . . . . . 101
XIX Połączenia bez skrzyżowań – stany Catalana . . . . . . . . . . 106
XX Algebra Temperleya-Lieba . . . . . . . . . . . . . . . . 113
XXI Wzór na wielokrotne skrzyżowanie w stanach
bez powrotów. . . . . . . . . . . . . . . . . . . . . 120
XXII Wielomianowy niezmiennik drzew z korzeniem . . . . . . . . . 124
XXIII Geometryczna realizacja presymplicjalnych i prekubicznych zbiorów . . 132
XXIV Torsja homologii skończonego kwazigrupowego kwandla
anihilowana przez jego rząd . . . . . . . . . . . . . . . . 139
XXV Presymplicjalna i prekubiczna homotopia
oraz dalsze badanie anihilacji . . . . . . . . . . . . . . . 148
A Homologie krat rozdzielnych. . . . . . . . . . . . . . . . 155
B Grupy dystrybutywne i jednoczłonowe homologie rozdzielne . . . . . 163
Literatura . . . . . . . . . . . . . . . . . . . . . . 170
Skorowidze . . . . . . . . . . . . . . . . . . . . . 178
Knot theory and distributive structures (summary) . . . . . . . . 186

  • Titel: Teoria węzłów i związanych z nimi struktur dystrybutywnych
  • Autor: Józef H. Przytycki
  • ISBN: 978-83-7865-728-6, 9788378657286
  • Veröffentlichungsdatum: 2022-05-05
  • Format: E-book
  • Artikelkennung: e_2qgw
  • Verleger: Wydawnictwo Uniwersytetu Gdańskiego