Категорії
Електронні книги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комп'ютер в офісі
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Мультимедійне навчання
- Нерухомість
- Переконання та НЛП
- Податки
- Соціальна політика
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Звіти, аналізи
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Електронна преса
- Architektura i wnętrza
- Biznes i Ekonomia
- Будинок та сад
- Електронний бізнес
- Фінанси
- Особисті фінанси
- Бізнес
- Фотографія
- Інформатика
- Відділ кадрів та оплата праці
- Комп'ютери, Excel
- Бухгалтерія
- Культура та література
- Наукові та академічні
- Охорона навколишнього середовища
- Впливові
- Освіта
- Податки
- Подорожі
- Психологія
- Релігія
- Сільське господарство
- Ринок книг і преси
- Транспорт та спедиція
- Здоров'я та краса
-
Історія
-
Інформатика
- Офісні застосунки
- Бази даних
- Біоінформатика
- Бізнес ІТ
- CAD/CAM
- Digital Lifestyle
- DTP
- Електроніка
- Цифрова фотографія
- Комп'ютерна графіка
- Ігри
- Хакування
- Hardware
- IT w ekonomii
- Наукові пакети
- Шкільні підручники
- Основи комп'ютера
- Програмування
- Мобільне програмування
- Інтернет-сервери
- Комп'ютерні мережі
- Стартап
- Операційні системи
- Штучний інтелект
- Технологія для дітей
- Вебмайстерність
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Оповідна поезія
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Шкільні підручники
-
Науково-популярна та академічна
- Археологія
- Bibliotekoznawstwo
- Кінознавство / Теорія кіно
- Філологія
- Польська філологія
- Філософія
- Finanse i bankowość
- Географія
- Економіка
- Торгівля. Світова економіка
- Історія та археологія
- Історія мистецтва і архітектури
- Культурологія
- Мовознавство
- літературні студії
- Логістика
- Математика
- Ліки
- Гуманітарні науки
- Педагогіка
- Навчальні засоби
- Науково-популярна
- Інше
- Психологія
- Соціологія
- Театральні студії
- Богослов’я
- Економічні теорії та науки
- Transport i spedycja
- Фізичне виховання
- Zarządzanie i marketing
-
Порадники
-
Ігрові посібники
-
Професійні та спеціальні порадники
-
Юридична
- Безпека життєдіяльності
- Історія
- Дорожній кодекс. Водійські права
- Юридичні науки
- Охорона здоров'я
- Загальне, компендіум
- Академічні підручники
- Інше
- Закон про будівництво і житло
- Цивільне право
- Фінансове право
- Господарське право
- Господарське та комерційне право
- Кримінальний закон
- Кримінальне право. Кримінальні злочини. Кримінологія
- Міжнародне право
- Міжнародне та іноземне право
- Закон про охорону здоров'я
- Закон про освіту
- Податкове право
- Трудове право та законодавство про соціальне забезпечення
- Громадське, конституційне та адміністративне право
- Кодекс про шлюб і сім'ю
- Аграрне право
- Соціальне право, трудове право
- Законодавство Євросоюзу
- Промисловість
- Сільське господарство та захист навколишнього середовища
- Словники та енциклопедії
- Державні закупівлі
- Управління
-
Путівники та подорожі
- Африка
- Альбоми
- Південна Америка
- Центральна та Північна Америка
- Австралія, Нова Зеландія, Океанія
- Австрія
- Азії
- Балкани
- Близький Схід
- Болгарія
- Китай
- Хорватія
- Чеська Республіка
- Данія
- Єгипет
- Естонія
- Європа
- Франція
- Гори
- Греція
- Іспанія
- Нідерланди
- Ісландія
- Литва
- Латвія
- Mapy, Plany miast, Atlasy
- Мініпутівники
- Німеччина
- Норвегія
- Активні подорожі
- Польща
- Португалія
- Інше
- Росія
- Румунія
- Словаччина
- Словенія
- Швейцарія
- Швеція
- Світ
- Туреччина
- Україна
- Угорщина
- Велика Британія
- Італія
-
Психологія
- Філософія життя
- Kompetencje psychospołeczne
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Аудіокниги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Нерухомість
- Переконання та НЛП
- Податки
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Історія
-
Інформатика
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Науково-популярна та академічна
-
Порадники
-
Професійні та спеціальні порадники
-
Юридична
-
Путівники та подорожі
-
Психологія
- Філософія життя
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Відеокурси
-
Бази даних
-
Big Data
-
Biznes, ekonomia i marketing
-
Кібербезпека
-
Data Science
-
DevOps
-
Для дітей
-
Електроніка
-
Графіка / Відео / CAX
-
Ігри
-
Microsoft Office
-
Інструменти розробки
-
Програмування
-
Особистісний розвиток
-
Комп'ютерні мережі
-
Операційні системи
-
Тестування програмного забезпечення
-
Мобільні пристрої
-
UX/UI
-
Веброзробка, Web development
-
Управління
Подкасти
- Електронні книги
- Big data (Великі дані)
- Аналіз даних
- Building Machine Learning Systems with Python. Expand your Python knowledge and learn all about machine-learning libraries in this user-friendly manual. ML is the next big breakthrough in technology and this book will give you the head-start you need
Деталі електронної книги
Увійти, Якщо вас цікавить зміст видання.
Building Machine Learning Systems with Python. Expand your Python knowledge and learn all about machine-learning libraries in this user-friendly manual. ML is the next big breakthrough in technology and this book will give you the head-start you need
Willi Richert, Luis Pedro Coelho
Eлектронна книга
Machine learning, the field of building systems that learn from data, is exploding on the Web and elsewhere. Python is a wonderful language in which to develop machine learning applications. As a dynamic language, it allows for fast exploration and experimentation and an increasing number of machine learning libraries are developed for Python.Building Machine Learning system with Python shows you exactly how to find patterns through raw data. The book starts by brushing up on your Python ML knowledge and introducing libraries, and then moves on to more serious projects on datasets, Modelling, Recommendations, improving recommendations through examples and sailing through sound and image processing in detail. Using open-source tools and libraries, readers will learn how to apply methods to text, images, and sounds. You will also learn how to evaluate, compare, and choose machine learning techniques. Written for Python programmers, Building Machine Learning Systems with Python teaches you how to use open-source libraries to solve real problems with machine learning. The book is based on real-world examples that the user can build on.
Readers will learn how to write programs that classify the quality of StackOverflow answers or whether a music file is Jazz or Metal. They will learn regression, which is demonstrated on how to recommend movies to users. Advanced topics such as topic modeling (finding a text's most important topics), basket analysis, and cloud computing are covered as well as many other interesting aspects.Building Machine Learning Systems with Python will give you the tools and understanding required to build your own systems, which are tailored to solve your problems.
Readers will learn how to write programs that classify the quality of StackOverflow answers or whether a music file is Jazz or Metal. They will learn regression, which is demonstrated on how to recommend movies to users. Advanced topics such as topic modeling (finding a text's most important topics), basket analysis, and cloud computing are covered as well as many other interesting aspects.Building Machine Learning Systems with Python will give you the tools and understanding required to build your own systems, which are tailored to solve your problems.
- Building Machine Learning Systems with Python
- Table of Contents
- Building Machine Learning Systems with Python
- Credits
- About the Authors
- About the Reviewers
- www.PacktPub.com
- Support files, eBooks, discount offers and more
- Why Subscribe?
- Free Access for Packt account holders
- Support files, eBooks, discount offers and more
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Downloading the example code
- Errata
- Piracy
- Questions
- 1. Getting Started with Python Machine Learning
- Machine learning and Python the dream team
- What the book will teach you (and what it will not)
- What to do when you are stuck
- Getting started
- Introduction to NumPy, SciPy, and Matplotlib
- Installing Python
- Chewing data efficiently with NumPy and intelligently with SciPy
- Learning NumPy
- Indexing
- Handling non-existing values
- Comparing runtime behaviors
- Learning SciPy
- Our first (tiny) machine learning application
- Reading in the data
- Preprocessing and cleaning the data
- Choosing the right model and learning algorithm
- Before building our first model
- Starting with a simple straight line
- Towards some advanced stuff
- Stepping back to go forward another look at our data
- Training and testing
- Answering our initial question
- Summary
- 2. Learning How to Classify with Real-world Examples
- The Iris dataset
- The first step is visualization
- Building our first classification model
- Evaluation holding out data and cross-validation
- Building more complex classifiers
- A more complex dataset and a more complex classifier
- Learning about the Seeds dataset
- Features and feature engineering
- Nearest neighbor classification
- Binary and multiclass classification
- Summary
- The Iris dataset
- 3. Clustering Finding Related Posts
- Measuring the relatedness of posts
- How not to do it
- How to do it
- Preprocessing similarity measured as similar number of common words
- Converting raw text into a bag-of-words
- Counting words
- Normalizing the word count vectors
- Removing less important words
- Stemming
- Installing and using NLTK
- Extending the vectorizer with NLTKs stemmer
- Stop words on steroids
- Our achievements and goals
- Clustering
- KMeans
- Getting test data to evaluate our ideas on
- Clustering posts
- Solving our initial challenge
- Another look at noise
- Tweaking the parameters
- Summary
- Measuring the relatedness of posts
- 4. Topic Modeling
- Latent Dirichlet allocation (LDA)
- Building a topic model
- Comparing similarity in topic space
- Modeling the whole of Wikipedia
- Choosing the number of topics
- Summary
- Latent Dirichlet allocation (LDA)
- 5. Classification Detecting Poor Answers
- Sketching our roadmap
- Learning to classify classy answers
- Tuning the instance
- Tuning the classifier
- Fetching the data
- Slimming the data down to chewable chunks
- Preselection and processing of attributes
- Defining what is a good answer
- Creating our first classifier
- Starting with the k-nearest neighbor (kNN) algorithm
- Engineering the features
- Training the classifier
- Measuring the classifier's performance
- Designing more features
- Deciding how to improve
- Bias-variance and its trade-off
- Fixing high bias
- Fixing high variance
- High bias or low bias
- Using logistic regression
- A bit of math with a small example
- Applying logistic regression to our postclassification problem
- Looking behind accuracy precision and recall
- Slimming the classifier
- Ship it!
- Summary
- 6. Classification II Sentiment Analysis
- Sketching our roadmap
- Fetching the Twitter data
- Introducing the Naive Bayes classifier
- Getting to know the Bayes theorem
- Being naive
- Using Naive Bayes to classify
- Accounting for unseen words and other oddities
- Accounting for arithmetic underflows
- Creating our first classifier and tuning it
- Solving an easy problem first
- Using all the classes
- Tuning the classifier's parameters
- Cleaning tweets
- Taking the word types into account
- Determining the word types
- Successfully cheating using SentiWordNet
- Our first estimator
- Putting everything together
- Summary
- 7. Regression Recommendations
- Predicting house prices with regression
- Multidimensional regression
- Cross-validation for regression
- Penalized regression
- L1 and L2 penalties
- Using Lasso or Elastic nets in scikit-learn
- P greater than N scenarios
- An example based on text
- Setting hyperparameters in a smart way
- Rating prediction and recommendations
- Summary
- Predicting house prices with regression
- 8. Regression Recommendations Improved
- Improved recommendations
- Using the binary matrix of recommendations
- Looking at the movie neighbors
- Combining multiple methods
- Basket analysis
- Obtaining useful predictions
- Analyzing supermarket shopping baskets
- Association rule mining
- More advanced basket analysis
- Summary
- Improved recommendations
- 9. Classification III Music Genre Classification
- Sketching our roadmap
- Fetching the music data
- Converting into a wave format
- Looking at music
- Decomposing music into sine wave components
- Using FFT to build our first classifier
- Increasing experimentation agility
- Training the classifier
- Using the confusion matrix to measure accuracy in multiclass problems
- An alternate way to measure classifier performance using receiver operator characteristic (ROC)
- Improving classification performance with Mel Frequency Cepstral Coefficients
- Summary
- 10. Computer Vision Pattern Recognition
- Introducing image processing
- Loading and displaying images
- Basic image processing
- Thresholding
- Gaussian blurring
- Filtering for different effects
- Adding salt and pepper noise
- Putting the center in focus
- Pattern recognition
- Computing features from images
- Writing your own features
- Basic image processing
- Classifying a harder dataset
- Local feature representations
- Summary
- 11. Dimensionality Reduction
- Sketching our roadmap
- Selecting features
- Detecting redundant features using filters
- Correlation
- Mutual information
- Asking the model about the features using wrappers
- Detecting redundant features using filters
- Other feature selection methods
- Feature extraction
- About principal component analysis (PCA)
- Sketching PCA
- Applying PCA
- Limitations of PCA and how LDA can help
- About principal component analysis (PCA)
- Multidimensional scaling (MDS)
- Summary
- 12. Big(ger) Data
- Learning about big data
- Using jug to break up your pipeline into tasks
- About tasks
- Reusing partial results
- Looking under the hood
- Using jug for data analysis
- Using Amazon Web Services (AWS)
- Creating your first machines
- Installing Python packages on Amazon Linux
- Running jug on our cloud machine
- Automating the generation of clusters with starcluster
- Creating your first machines
- Summary
- A. Where to Learn More about Machine Learning
- Online courses
- Books
- Q&A sites
- Blogs
- Data sources
- Getting competitive
- What was left out
- Summary
- Index
- Назва: Building Machine Learning Systems with Python. Expand your Python knowledge and learn all about machine-learning libraries in this user-friendly manual. ML is the next big breakthrough in technology and this book will give you the head-start you need
- Автор: Willi Richert, Luis Pedro Coelho
- Оригінальна назва: Building Machine Learning Systems with Python. Expand your Python knowledge and learn all about machine-learning libraries in this user-friendly manual. ML is the next big breakthrough in technology and this book will give you the head-start you need.
- ISBN: 9781782161417, 9781782161417
- Дата видання: 2013-07-26
- Формат: Eлектронна книга
- Ідентифікатор видання: e_3czc
- Видавець: Packt Publishing