Datenanalyse

705
E-book

Tomographic imaging in environmental, industrial and medical applications

Tomasz Rymarczyk

Monografia przedstawia szeroki zakres dziedzin, w których znajduje zastosowanie tomografia. W nowatorski sposób prezentuje ważne zagadnienia z zakresu rozwiązywania problemów odwrotnych w tomografii przemysłowej oraz prototypów, pomiarów i modeli układów złożonych. Rozważania i dogłębna analiza numeryczna zastosowana na potrzeby rozwiązania problemu naprzód i odwrotnego czynią tę pracę wyjątkową w skali krajowej i międzynarodowej. Autor wniósł znaczący wkład w rozwój naukowej dyscypliny: Informatyka w aspekcie praktycznych zastosowań, zarówno przemysłowych, jak i medycznych. Używał tomografii procesowej do badania bardzo dużych obiektów. Obiekty te to wielohektarowe obszary położone w znacznej odległości od siebie. To innowacyjne zastosowanie tomografii procesowej

706
E-book

Transformative Magic of M Code in Power Query Excel & Power BI. A Beginner's Guide to Get the Data Structures Needed to Create Insightful Data Analysis Solutions

MrExcel's Holy Macro! Books, Mike Girvin

This book begins with the fundamentals, introducing key concepts like let expressions, keywords, and identifiers, before guiding you through more advanced techniques such as creating custom functions, handling diverse data types, and building reusable queries. Each chapter combines theoretical insights with practical examples, empowering you to handle complex data challenges with confidence.As you progress, you’ll learn how to master lookup formulas, manipulate data with unpivot, append, join, and group operations, and explore advanced table transformations. A dedicated section on data connectors provides in-depth knowledge of importing data from various sources and locales, ensuring flexibility and adaptability.The book concludes with practical data modeling projects that include handling inconsistent tables, appending multiple files, and building dynamic SharePoint connections. With a final focus on privacy levels and data security, this book equips you to use Power Query effectively and securely in real-world scenarios.

707
E-book

Transformers for Natural Language Processing and Computer Vision. Explore Generative AI and Large Language Models with Hugging Face, ChatGPT, GPT-4V, and DALL-E 3 - Third Edition

Denis Rothman

Transformers for Natural Language Processing and Computer Vision, Third Edition, explores Large Language Model (LLM) architectures, applications, and various platforms (Hugging Face, OpenAI, and Google Vertex AI) used for Natural Language Processing (NLP) and Computer Vision (CV).The book guides you through different transformer architectures to the latest Foundation Models and Generative AI. You’ll pretrain and fine-tune LLMs and work through different use cases, from summarization to implementing question-answering systems with embedding-based search techniques. You will also learn the risks of LLMs, from hallucinations and memorization to privacy, and how to mitigate such risks using moderation models with rule and knowledge bases. You’ll implement Retrieval Augmented Generation (RAG) with LLMs to improve the accuracy of your models and gain greater control over LLM outputs.Dive into generative vision transformers and multimodal model architectures and build applications, such as image and video-to-text classifiers. Go further by combining different models and platforms and learning about AI agent replication.This book provides you with an understanding of transformer architectures, pretraining, fine-tuning, LLM use cases, and best practices.

708
E-book

Uczenie maszynowe dla programistów

Drew Conway, John Myles White

Wyciągnij najlepsze wnioski z dostępnych danych! Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka. Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków. Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi. Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości. Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW. Naucz się optymalizacji, próbując złamać prosty szyfr literowy. Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań. Zbuduj system rekomendacji wartościowych twitterowców. Naucz się czytać i analizować dane! Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych” — Max Shron, OkCupid  

709
E-book

Uczenie maszynowe w Pythonie. Leksykon kieszonkowy

Matt Harrison

Uczenie maszynowe i nauka o danych są dziś ogromnie popularne. Dziedziny te szybko się rozwijają, a poszczególne techniki uczenia maszynowego znajdują coraz więcej różnorodnych zastosowań. Wiedza, którą można uzyskać dzięki odpowiedniemu przygotowaniu danych i ich eksploracji, często jest bezcenna. Umiejętność ich analizy oraz wiedza o możliwych sposobach rozwiązywania problemów napotykanych podczas uczenia maszynowego są więc dużymi atutami i mogą być wykorzystywane w wielu gałęziach nauki, techniki i biznesu. Z tego zwięzłego przewodnika po technikach uczenia maszynowego opartego na strukturalnych danych skorzystają programiści, badacze, osoby zajmujące się nauką o danych oraz twórcy systemów sztucznej inteligencji. Znalazł się tu wyczerpujący opis procesu uczenia maszynowego i klasyfikacji danych strukturalnych. Przedstawiono też metody klastrowania danych, analizy regresji, redukcji wymiarowości oraz inne ważne zagadnienia. Prezentowane treści zostały zilustrowane uwagami, tabelami i przykładami kodu. Nie zabrakło opisu przydatnych bibliotek, niezwykle użytecznych w pracy analityka danych. W efekcie książka pozwala na szybkie rozwiązywanie różnego rodzaju problemów związanych z przetwarzaniem danych strukturalnych. W książce między innymi: klasyfikacja, oczyszczanie i uzupełnianie braków danych eksploracyjna analiza danych i dobór modelu danych przykłady analiz regresji redukcja wymiarowości potoki w bibliotece scikit-learn Uczenie maszynowe: nowy wymiar analizy danych!

710
E-book

Umiejętności analityczne w pracy z danymi i sztuczną inteligencją. Wykorzystywanie najnowszych technologii w rozwijaniu przedsiębiorstwa

Daniel Vaughan

Czy technologie sztucznej inteligencji spełnią obietnicę wielkiego sukcesu? Dotychczas stosunkowo niewielu przedsiębiorstwom udało się dokonać przełomu dzięki modelom biznesowym opartym na nowych technologiach. Niepowodzenia te można różnie tłumaczyć. Często problemem jest brak umiejętności analitycznych, a przecież rozwój przedsiębiorstwa zależy od jakości decyzji, a nie samego wykorzystywania danych lub technologii predykcyjnych. Okazuje się jednak, że lepsze decyzje można podejmować dzięki wykorzystaniu sztucznej inteligencji i dostępnych danych. Oto praktyczny przewodnik po wypróbowanej kompleksowej metodzie ułatwiającej przekładanie decyzji biznesowych na łatwe w realizacji, normatywne rozwiązania, oparte na danych i sztucznej inteligencji. Badacze danych, analitycy i menedżerowie znajdą tu techniki ułatwiające zadawanie właściwych pytań i generowanie wartości z wykorzystaniem nowoczesnych technologii AI i reguł decyzyjnych. Przedstawiono szczegóły procesu decyzyjnego, począwszy od pożądanych konsekwencji lub wyników, aby następnie cofnąć się do kwestii działań, które można podjąć, i skończyć na omówieniu problemów oraz szans pojawiających się w wyniku wpłynięcia na niepewność i przyczynowość. Opisano też, jak formułować i rozwiązywać problemy normatywne. Dzięki tej książce dowiesz się, jak: przekształcać pytania biznesowe w normatywne rozwiązania rozkładać decyzje biznesowe na etapy i stosować do nich różne metody analityczne zrozumieć i zaakceptować niepewność w procesie decyzyjnym optymalizować decyzje za pomocą predykcyjnych i normatywnych metod analizy generować znaczne wartości za pomocą technologii opartych na AI i danych Opieraj swoje decyzje na technikach analizy danych!

711
E-book

Unleashing the Power of Data with Trusted AI. A guide for board members and executives

Wendy Turner-Williams

Written by a distinguished leader and innovator who has been instrumental in spearheading digital, cloud, and AI transformations across global brands, Unleashing the Power of Data with Trusted AI is an indispensable resource that will make you AI-ready.This comprehensive guide is designed to meet the urgent need for clarity and to give you actionable insights into today's rapidly evolving landscape of AI and its fundamental driver - data. You’ll delve into the exciting world of AI and its integration with data, uncover its significance, ethical considerations, and strategic applications with real-life success stories from industry giants like Starbucks, Netflix, and Siemens. You’ll also witness first-hand how the integration of data and AI has reshaped markets and elevated customer experiences, and discover the future of generative AI based on several surveys and case studies. You’ll gain an understanding of how AI has evolved across industries, empowering decision-making and fostering innovation. Tailored for board members, executives, innovators, and tech enthusiasts, this immersive guide will reshape your understanding of data and AI synergy.By the end of this guide, you’ll be able to lead your teams, customers, partners, and organizations confidently and responsibly in the era of AI.

712
E-book

Unlocking Data with Generative AI and RAG. Enhance generative AI systems by integrating internal data with large language models using RAG

Keith Bourne, Shahul Es

Generative AI is helping organizations tap into their data in new ways, with retrieval-augmented generation (RAG) combining the strengths of large language models (LLMs) with internal data for more intelligent and relevant AI applications. The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes.The book explores RAG’s role in enhancing organizational operations by blending theoretical foundations with practical techniques. You’ll work with detailed coding examples using tools such as LangChain and Chroma’s vector database to gain hands-on experience in integrating RAG into AI systems. The chapters contain real-world case studies and sample applications that highlight RAG’s diverse use cases, from search engines to chatbots. You’ll learn proven methods for managing vector databases, optimizing data retrieval, effective prompt engineering, and quantitatively evaluating performance. The book also takes you through advanced integrations of RAG with cutting-edge AI agents and emerging non-LLM technologies.By the end of this book, you’ll be able to successfully deploy RAG in business settings, address common challenges, and push the boundaries of what’s possible with this revolutionary AI technique.

713
E-book

Up and Running with Affinity Designer. A practical, easy-to-follow guide to get up to speed with the powerful features of Affinity Designer 1.10

Kevin House

Affinity Designer is a widely adopted creative application, and in a reasonably short space of time, it has become a leading design and illustration application. Affinity Designer, along with Affinity Photo and Affinity Publisher, is part of a suite of award-winning creative software applications developed by Serif Europe. Built on the latest technologies, which make it fast and smooth, Affinity Designer is quickly becoming the go-to professional creative application for vector drawing and pixel-based painting.Up and Running with Affinity Designer is a comprehensive hands-on guide to the Affinity Designer software. Whether you're new to the creative industry, a seasoned professional looking for a proven alternative, or an enthusiastic hobbyist, this book will help you get up to speed in no time. You’ll learn how to create documents and explore workflow best practices while working through practical exercises using the knowledge and skills developed in each chapter to solidify your understanding of the fundamentals. Finally, you’ll bring it all together with real-world practical applications by building a fun logo and professional illustration, forming a base for in-depth exploration in your own projects.By the end of this Affinity Designer book, you'll have gained the knowledge and confidence to use Affinity Designer as part of your creative toolset.

714
E-book

Vector Search for Practitioners with Elastic. A toolkit for building NLP solutions for search, observability, and security using vector search

Bahaaldine Azarmi, Jeff Vestal, Shay Banon

While natural language processing (NLP) is largely used in search use cases, this book aims to inspire you to start using vectors to overcome equally important domain challenges like observability and cybersecurity. The chapters focus mainly on integrating vector search with Elastic to enhance not only their search but also observability and cybersecurity capabilities.The book, which also features a foreword written by the founder of Elastic, begins by teaching you about NLP and the functionality of Elastic in NLP processes. Here you’ll delve into resource requirements and find out how vectors are stored in the dense-vector type along with specific page cache requirements for fast response times. As you advance, you’ll discover various tuning techniques and strategies to improve machine learning model deployment, including node scaling, configuration tuning, and load testing with Rally and Python. You’ll also cover techniques for vector search with images, fine-tuning models for improved performance, and the use of clip models for image similarity search in Elasticsearch. Finally, you’ll explore retrieval-augmented generation (RAG) and learn to integrate ChatGPT with Elasticsearch to leverage vectorized data, ELSER's capabilities, and RRF's refined search mechanism.By the end of this NLP book, you’ll have all the necessary skills needed to implement and optimize vector search in your projects with Elastic.

715
E-book

Web Data Mining z użyciem języka Python. Odkrywaj i wyodrębniaj informacje ze stron internetowych za pomocą języka Python

Dr Ranjana Rajnish; Dr Meenakshi Srivastava

Danologia to najszybciej rozwijająca się dziedzina na świecie. Przewiduje się, że do roku 2026 stworzy 11,5 mln nowych miejsc pracy, tak więc osoby poszukujące pracy i posiadające ten zestaw umiejętności mają tu wiele możliwości. Jednym z najbardziej pożądanych obszarów w dziedzinie danologii jest wydobywanie informacji ze stron internetowych. Jeśli jesteś początkującym danologiem, który chce się nauczyć różnych technik eksplorowania stron sieci Web, ta książka jest właśnie dla Ciebie. Na początku tej książki omawiane są kluczowe koncepcje związane z eksploracją danych w sieci Web i jej taksonomią. Następnie omawiane są podstawy dotyczące procesu ekstrakcji danych ze stron, jego zastosowania i komponenty, a także inne tematy, jak choćby aspekty prawne związane z procesem ekstrakcji, wyodrębnianiem i wstępnym przetwarzaniem danych, ekstrakcją danych z dynamicznych stron internetowych czy zabezpieczeniem CAPTCHA. Przedstawia również koncepcję eksploracji opinii oraz struktury stron internetowych. Ponadto omawia ona eksplorację grafów, wyodrębnianie informacji ze stron internetowych, wyszukiwanie na stronach i hiperłącza, wyszukiwanie algorytmem Hyperlink Induced Topic Search (HITS) oraz algorytmy partycjonowania, które używane są przy eksploracji danych w sieci Web. Na końcu książki prezentowane są różne techniki eksploracji ułatwiające odkrywanie interesujących wzorców użycia z danych na stronach internetowych. Kluczowe elementy Pełny przegląd podstawowych i zaawansowanych koncepcji dotyczących eksploracji danych w sieci Web. Pracuj z łatwymi w użyciu bibliotekami open source języka Python do eksplorowania danych. Zapoznaj się z różnymi korzystnymi obszarami i zastosowaniami dla eksploracji danych w sieci Web. CZEGO SIĘ NAUCZYSZ? Dokonywać ekstrakcji danych z dowolnej witryny internetowej z użyciem języka Python. Zapoznasz się z koncepcjami dotyczącymi eksploracji opinii i analizy nastrojów. Użyjesz eksploracji struktury do odkrywania informacji o strukturze danej strony. Nauczysz się zbierać i analizować dane z mediów społecznościowych z użyciem języka Python. Użyjesz eksploracji korzystania ze strony do przewidywania zachowań internautów podczas przeglądania stron. Dla kogo jest ta książka Ta książka jest przeznaczona dla każdego, kto chce się nauczyć eksplorować dane na stronach sieci Web. Będzie najbardziej pomocna dla początkujących danologów, inżynierów danych i analityków danych, którzy chcą opanować techniki eksplorowania danych na stronach internetowych.

716
E-book

Wizualizacja danych. Pulpity nawigacyjne i raporty w Excelu

Dick Kusleika

Dziś nawet małe firmy mają niespotykany wcześniej dostęp do dużych ilości danych. Osoby zarządzające przedsiębiorstwem mogą z nich korzystać przy podejmowaniu decyzji biznesowych, w tym celu jednak konieczne jest przetworzenie surowych danych. Tym właśnie zajmuje się analityka biznesowa, a jednym z najpopularniejszych programów stosowanych w tej dziedzinie jest MS Excel. Od jakiegoś czasu oprogramowanie to zawiera wyspecjalizowane funkcje i narzędzia, dzięki którym analizę i wizualizację danych można wykonać bez potrzeby sięgania po inne aplikacje. Lektura tej książki nauczy Cię myśleć o danych inaczej niż dotychczas. Przekonasz się, że to nie tylko wypełnione kolumny i wiersze. Nie poprzestaniesz na prostej pracy z danymi, a nauczysz się je układać w historie obfitujące w cenne wnioski. Dowiesz się, jak sobie radzić z wartościami, które wyraźnie odstają od innych, i nauczysz się odpowiedniego grupowania danych. Zobaczysz, że można je pokazywać ― nawet jeśli są to ogromne ilości ― bez zasypywania i dezorientowania odbiorców. W końcu odkryjesz, jak przejść od arkusza z nieprzetworzonymi danymi i wykresami do pełnych wartościowych informacji raportów i paneli nawigacyjnych. W ten sposób, dzięki wizualizacji danych biznesowych, łatwiej Ci będzie przekonać swoich partnerów do własnych pomysłów. Dzięki książce poznasz sposoby: analizowania bardzo dużych ilości danych  prezentowania danych z kilku perspektyw efektywnego rozdzielania danych na różne widoki  automatyzowania procesów przygotowywania raportów i przeprowadzania analiz tworzenia atrakcyjnych paneli nawigacyjnych przygotowania analiz typu „co, jeśli” MS Excel: najbardziej przydatne wnioski wyciągniesz ze swoich danych!

717
E-book

Wnioskowanie przyczynowe w Pythonie. Praktyczne wykorzystanie w branży technologicznej

Matheus Facure

Wnioskowanie przyczynowe przydaje się w sytuacji, gdy trzeba określić wpływ decyzji biznesowej na konkretny wynik, na przykład wielkość sprzedaży. Działania te są dobrze znane nauce, ale dopiero od niedawna świat poznaje korzyści z ich zastosowania w branży technologicznej. Przyczyniły się do tego postępy w uczeniu maszynowym, automatyzacji procesów i danologii. Teraz, aby uzyskać wymierne korzyści, wystarczy kilka wierszy kodu w Pythonie. Poznaj narzędzia najbardziej znanych analityków danych korzystających z Pythona! prof. Nick Huntington-Klein, autor The Effect: An Introduction to Research Design and Causality Tę książkę docenią w szczególności analitycy danych. Wyjaśniono w niej potencjał wnioskowania przyczynowego w zakresie szacowania wpływu i efektów w biznesie. Opisano klasyczne metody wnioskowania przyczynowego, w tym testy A/B, regresja liniowa, wskaźnik skłonności, metoda syntetycznej kontroli i metoda różnicy w różnicach, przy czym skoncentrowano się przede wszystkim na praktycznym aspekcie tych technik. Znalazło się tu również omówienie nowoczesnych rozwiązań, takich jak wykorzystanie uczenia maszynowego do szacowania heterogenicznych efektów. Każda metoda została zilustrowana opisem zastosowania w branży technologicznej. W książce między innymi: podstawy wnioskowania przyczynowego problemy biznesowe jako zagadnienia z obszaru wnioskowania przyczynowego eksperymenty geograficzne i eksperymenty z przełączaniem oddziaływania badanie błędu systematycznego modele graficzne i wizualizacja związków przyczynowych Najlepsza książka poświęcona najnowocześniejszym metodom, działaniu na rzeczywistych danych i rozwiązywaniu praktycznych problemów! Sean J. Taylor, główny badacz w Motif Analytics

718
E-book

Wprowadzenie do systemów baz danych. Wydanie VII

Ramez Elmasri, Shamkant B. Navathe

Mijają lata, a bazy danych wciąż stanowią serce większości systemów informatycznych. Rozwój technologii sprawia jednak, że zaprojektowanie systemu baz danych, jego wdrożenie i administrowanie nim wymaga biegłości w wielu dziedzinach. Niezbędne są solidne podstawy modelowania i projektowania baz danych, umiejętność posłużenia się językami i modelami udostępnianymi przez systemy zarządzania bazami danych, a także znajomość technik implementacji samych systemów. Od profesjonalisty wymaga się także wiedzy o najnowszych technologiach, takich jak NoSQL i oczywiście big data. Ważnym uzupełnieniem tego szerokiego wachlarza jest też znajomość technologii powiązanych z systemami bazodanowymi. Ta książka jest siódmym, zaktualizowanym wydaniem klasycznego podręcznika do nauki baz danych. Jest to szczegółowa prezentacja najważniejszych aspektów systemów i aplikacji bazodanowych oraz powiązanych technologii. To znakomity podręcznik dla studentów i świetne kompendium dla praktyków. Sporo miejsca poświęcono w nim systemom rozproszonym oraz technologiom opartym na systemie Hadoop i modelu MapReduce. Nie zabrakło opisu takich zagadnień, jak model IR, wyszukiwanie z użyciem słów kluczowych, porównanie baz danych z modelem IR, modele wyszukiwania, ocena wyszukiwania i algorytmy rankingowe. Wykładowcom przyda się szereg ułatwiających pracę dydaktyczną diagramów, prezentacji i rysunków. W książce między innymi: wprowadzenie do modeli, systemów i języków z obszaru baz danych; model związków encji i programowanie baz danych; bazy relacyjne, obiektowo-relacyjne, obiektowe i XML w bazach danych; algorytmy przetwarzania zapytań i techniki optymalizacji; bezpieczeństwo baz danych. Baza danych? Stosuj tylko najskuteczniejsze rozwiązania!

719
E-book

XGBoost for Regression Predictive Modeling and Time Series Analysis. Learn how to build, evaluate, and deploy predictive models with expert guidance

Partha Pritam Deka, Joyce Weiner, Prof. Roberto V. Zicari

XGBoost offers a powerful solution for regression and time series analysis, enabling you to build accurate and efficient predictive models. In this book, the authors draw on their combined experience of 40+ years in the semiconductor industry to help you harness the full potential of XGBoost, from understanding its core concepts to implementing real-world applications.As you progress, you'll get to grips with the XGBoost algorithm, including its mathematical underpinnings and its advantages over other ensemble methods. You'll learn when to choose XGBoost over other predictive modeling techniques, and get hands-on guidance on implementing XGBoost using both the Python API and scikit-learn API. You'll also get to grips with essential techniques for time series data, including feature engineering, handling lag features, encoding techniques, and evaluating model performance. A unique aspect of this book is the chapter on model interpretability, where you'll use tools such as SHAP, LIME, ELI5, and Partial Dependence Plots (PDP) to understand your XGBoost models. Throughout the book, you’ll work through several hands-on exercises and real-world datasets.By the end of this book, you'll not only be building accurate models but will also be able to deploy and maintain them effectively, ensuring your solutions deliver real-world impact.

720
E-book

XML Basics. A Comprehensive Guide to Understanding and Implementing XML

Mercury Learning and Information, S. Banzal

This book focuses on essential XML standards relevant to almost all developers. It investigates XML technologies applicable across a wide range of applications, rather than those limited to specific domains. While XML is a markup language, it is widely used by programmers. The book also covers supporting technologies layered on top of XML, such as XLinks, XSLT, Namespaces, Schemas, XHTML, RDDL, XPointers, XPath, SAX, and DOM.The journey begins with understanding XML and its syntax. It then explores Document Type Definitions (DTDs), Namespaces, and XHTML. Following this, the book delves into CSS Style Sheets, XML Schema Basics, XSL and XSLT, SOAP, DOM Programming Interface, SAX, XPath, XLink, XQuery, XPointer, XForms, XSL-FO, and using XML with Databases. The final chapters cover Web Services, providing a comprehensive understanding of how XML integrates into various applications.Mastering these standards and technologies is crucial for developers working with XML. This book transitions readers from basic XML syntax to advanced applications, blending theoretical concepts with practical examples. It is an essential resource for developers looking to leverage XML in their projects.