Maschinelles Lernen

161
E-book

Intelligent Workloads at the Edge. Deliver cyber-physical outcomes with data and machine learning using AWS IoT Greengrass

Indraneel Mitra, Ryan Burke

The Internet of Things (IoT) has transformed how people think about and interact with the world. The ubiquitous deployment of sensors around us makes it possible to study the world at any level of accuracy and enable data-driven decision-making anywhere. Data analytics and machine learning (ML) powered by elastic cloud computing have accelerated our ability to understand and analyze the huge amount of data generated by IoT. Now, edge computing has brought information technologies closer to the data source to lower latency and reduce costs.This book will teach you how to combine the technologies of edge computing, data analytics, and ML to deliver next-generation cyber-physical outcomes. You’ll begin by discovering how to create software applications that run on edge devices with AWS IoT Greengrass. As you advance, you’ll learn how to process and stream IoT data from the edge to the cloud and use it to train ML models using Amazon SageMaker. The book also shows you how to train these models and run them at the edge for optimized performance, cost savings, and data compliance.By the end of this IoT book, you’ll be able to scope your own IoT workloads, bring the power of ML to the edge, and operate those workloads in a production setting.

162
E-book

Interpretable Machine Learning with Python. Build explainable, fair, and robust high-performance models with hands-on, real-world examples - Second Edition

Serg Masís, Aleksander Molak, Denis Rothman

Interpretable Machine Learning with Python, Second Edition, brings to light the key concepts of interpreting machine learning models by analyzing real-world data, providing you with a wide range of skills and tools to decipher the results of even the most complex models.Build your interpretability toolkit with several use cases, from flight delay prediction to waste classification to COMPAS risk assessment scores. This book is full of useful techniques, introducing them to the right use case. Learn traditional methods, such as feature importance and partial dependence plots to integrated gradients for NLP interpretations and gradient-based attribution methods, such as saliency maps.In addition to the step-by-step code, you’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability.By the end of the book, you’ll be confident in tackling interpretability challenges with black-box models using tabular, language, image, and time series data.

163
E-book

Interpretable Machine Learning with Python. Learn to build interpretable high-performance models with hands-on real-world examples

Serg Masís

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf.We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining.By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.

164
E-book

Introduction to Algorithms. A Comprehensive Guide for Beginners: Unlocking Computational Thinking

Cuantum Technologies LLC

Begin your journey into the fascinating world of algorithms with this comprehensive course. Starting with an introduction to the basics, you will learn about pseudocode and flowcharts, the fundamental tools for representing algorithms. As you progress, you'll delve into the efficiency of algorithms, understanding how to evaluate and optimize them for better performance. The course will also cover various basic algorithm types, providing a solid foundation for further exploration.You will explore specific categories of algorithms, including search and sort algorithms, which are crucial for managing and retrieving data efficiently. You will also learn about graph algorithms, which are essential for solving problems related to networks and relationships. Additionally, the course will introduce you to the data structures commonly used in algorithms.Towards the end, the focus shifts to algorithm design techniques and their real-world applications. You will discover various strategies for creating efficient and effective algorithms and see how these techniques are applied in real-world scenarios. By the end of the course, you will have a thorough understanding of algorithmic principles and be equipped with the skills to apply them in your technical career.

165
E-book

Inżynieria danych na platformie AWS. Jak tworzyć kompletne potoki uczenia maszynowego

Chris Fregly, Antje Barth

Platforma Amazon Web Services jest uważana za największą i najbardziej dojrzałą chmurę obliczeniową. Zapewnia bogaty zestaw specjalistycznych narzędzi ułatwiających realizację projektów z zakresu inżynierii danych i uczenia maszynowego. W ten sposób inżynierowie danych, architekci i menedżerowie mogą szybko zacząć używać danych do podejmowania kluczowych decyzji biznesowych. Uzyskanie optymalnej efektywności pracy takich projektów wymaga jednak dobrego rozeznania w możliwościach poszczególnych narzędzi, usług i bibliotek. Dzięki temu praktycznemu przewodnikowi szybko nauczysz się tworzyć i uruchamiać procesy w chmurze, a następnie integrować wyniki z aplikacjami. Zapoznasz się ze scenariuszami stosowania technik sztucznej inteligencji: przetwarzania języka naturalnego, rozpoznawania obrazów, wykrywania oszustw, wyszukiwania kognitywnego czy wykrywania anomalii w czasie rzeczywistym. Ponadto dowiesz się, jak łączyć cykle rozwoju modeli z pobieraniem i analizą danych w powtarzalnych potokach MLOps. W książce znajdziesz też zbiór technik zabezpieczania projektów i procesów z obszaru inżynierii danych, takich jak stosowanie usługi IAM, uwierzytelnianie, autoryzacja, izolacja sieci, szyfrowanie danych w spoczynku czy postkwantowe szyfrowanie sieci dla danych w tranzycie. Najciekawsze zagadnienia: narzędzia AWS związane ze sztuczną inteligencją i z uczeniem maszynowym kompletny cykl rozwoju modelu przetwarzania języka naturalnego powtarzalne potoki MLOps uczenie maszynowe w czasie rzeczywistym wykrywanie anomalii i analiza strumieni danych zabezpieczanie projektów i procesów z obszaru inżynierii danych AWS i inżynieria danych: tak zwiększysz wydajność i obniżysz koszty! Implementowanie solidnego kompletnego procesu uczenia maszynowego to żmudne zadanie, dodatkowo komplikowane przez szeroki zakres dostępnych narzędzi i technologii. Autorzy wykonali świetną robotę, a jej efekty pomogą zarówno nowicjuszom, jak i doświadczonym praktykom realizować to zadanie z wykorzystaniem możliwości, jakie dają usługi AWS Brent Rabowsky, danolog w firmie Amazon Web Services

166
E-book

Jak projektować systemy uczenia maszynowego. Iteracyjne tworzenie aplikacji gotowych do pracy

Chip Huyen

Systemy uczenia maszynowego (ML) charakteryzują się złożonością i unikatowością. Zmiana w jednym z wielu komponentów może istotnie wpłynąć na całość. Zastosowane w modelach dane diametralnie różnią się od siebie w poszczególnych przypadkach użycia. To wszystko sprawia, że bardzo trudno jest stworzyć taki system, jeśli każdy komponent zostaje zaprojektowany oddzielnie. Aby zbudować aplikację korzystającą z ML i nadającą się do wdrożenia w środowisku produkcyjnym, konieczne jest podejmowanie decyzji projektowych z uwzględnieniem cech systemu jako całości. To książka przeznaczona dla inżynierów, którzy chcą stosować systemy uczenia maszynowego do rozwiązywania rzeczywistych problemów biznesowych. Zaprezentowano w niej systemy ML używane w szybko rozwijających się startupach, a także przedstawiono holistyczne podejście do ich projektowania ― z uwzględnieniem różnych komponentów systemu i celów osób zaangażowanych w proces. Dużo uwagi poświęcono analizie decyzji projektowych, dotyczących między innymi sposobu tworzenia i przetwarzania danych treningowych, wyboru wskaźników, częstotliwości ponownego treningu modelu czy techniki monitorowania pracy aplikacji. Zaprezentowana tu koncepcja iteracyjna natomiast pozwala na uzyskanie pewności, że podejmowane decyzje są optymalne z punktu widzenia pracy całości systemu. Co ważne, poszczególne zagadnienia zostały zilustrowane rzeczywistymi studiami przypadków. W książce między innymi: wybór wskaźników właściwych dla danego problemu biznesowego automatyzacja ciągłego rozwoju, ewaluacji, wdrażania i aktualizacji modeli szybkie wykrywanie i rozwiązywanie problemów podczas wdrożenia produkcyjnego tworzenie wszechstronnej platformy ML odpowiedzialne tworzenie systemów ML Wdrażaj i skaluj modele tak, aby uzyskiwać najlepsze wyniki!

167
E-book

Jak sztuczna inteligencja zmieni twoje życie

Marek Tłuczek

Poznaj podstawy i zastosowania sztucznej inteligencji Odkryj niesamowity świat AI Dowiedz się, jak powstała Zrozum, dokąd zmierza Sztuczna inteligencja staje się powoli nieodzownym składnikiem naszego życia. Przeszła długą drogę od modnego hasła pojawiającego się głównie w specjalistycznych publikacjach do technologii mającej realny wpływ na naszą codzienność. Z każdym dniem lepiej radzi sobie z coraz bardziej zaawansowanymi zadaniami, już nie tylko wygrywając mecze z arcymistrzami szachowymi, lecz również analizując ogromne zbiory danych, tłumacząc teksty, prowadząc samochody, rozpoznając ludzką mowę, przetwarzając obrazy, a nawet komponując muzykę i tworząc dzieła malarskie. Aby dogłębnie poznać szczegóły techniczne stojące za AI, trzeba dysponować pewną wiedzą informatyczną i sprawnie posługiwać się odpowiednim aparatem matematycznym. Na szczęście aby wkroczyć w świat sztucznej inteligencji i dowiedzieć się, co można dzięki niej zyskać, nie jest niezbędna żadna magia, wystarczy właściwy przewodnik! Jeśli chcesz to zrobić, dobrze trafiłeś! Ta publikacja pokaże Ci najciekawsze zastosowania AI i pomoże zrozumieć sposób działania tej technologii, a także spróbuje odpowiedzieć na pytanie, kiedy przekroczy ograniczenia swoich twórców. Być może zamierzasz zostać specjalistą od sztucznej inteligencji lub po prostu chcesz poznać podstawy tego zagadnienia. Jeśli tak, zrób pierwszy krok w tym kierunku! Historia sztucznej inteligencji Porównanie AI i ludzkiego mózgu Prawdopodobne scenariusze rozwoju AI Wykorzystanie AI w grach logicznych Rozpoznawanie mowy, języka pisanego i obrazu Medyczne zastosowania sztucznej inteligencji Wykorzystanie AI w autonomicznym transporcie Zagrożenia związane ze sztuczną inteligencją Nie czekaj! Już dziś poznaj technologię przyszłości! O książce i Autorze w mediach: Faktyczny Dom Kultury: Jak sztuczna inteligencja zmieni Twoje życie? Rozmowa Marka Tłuczka z Kamilem Bałukiem Radio Nowy Świat: Wywiad z autorem - prowadząca Katarzyna Kasia

168
E-book

Java Deep Learning Cookbook. Train neural networks for classification, NLP, and reinforcement learning using Deeplearning4j

Rahul Raj

Java is one of the most widely used programming languages in the world. With this book, you will see how to perform deep learning using Deeplearning4j (DL4J) – the most popular Java library for training neural networks efficiently.This book starts by showing you how to install and configure Java and DL4J on your system. You will then gain insights into deep learning basics and use your knowledge to create a deep neural network for binary classification from scratch. As you progress, you will discover how to build a convolutional neural network (CNN) in DL4J, and understand how to construct numeric vectors from text. This deep learning book will also guide you through performing anomaly detection on unsupervised data and help you set up neural networks in distributed systems effectively. In addition to this, you will learn how to import models from Keras and change the configuration in a pre-trained DL4J model. Finally, you will explore benchmarking in DL4J and optimize neural networks for optimal results.By the end of this book, you will have a clear understanding of how you can use DL4J to build robust deep learning applications in Java.