Maschinelles Lernen

33
E-book

AWS Certified Machine Learning Specialty: MLS-C01 Certification Guide. The definitive guide to passing the MLS-C01 exam on the very first attempt

Somanath Nanda, Weslley Moura

The AWS Certified Machine Learning Specialty exam tests your competency to perform machine learning (ML) on AWS infrastructure. This book covers the entire exam syllabus using practical examples to help you with your real-world machine learning projects on AWS.Starting with an introduction to machine learning on AWS, you'll learn the fundamentals of machine learning and explore important AWS services for artificial intelligence (AI). You'll then see how to prepare data for machine learning and discover a wide variety of techniques for data manipulation and transformation for different types of variables. The book also shows you how to handle missing data and outliers and takes you through various machine learning tasks such as classification, regression, clustering, forecasting, anomaly detection, text mining, and image processing, along with the specific ML algorithms you need to know to pass the exam. Finally, you'll explore model evaluation, optimization, and deployment and get to grips with deploying models in a production environment and monitoring them.By the end of this book, you'll have gained knowledge of the key challenges in machine learning and the solutions that AWS has released for each of them, along with the tools, methods, and techniques commonly used in each domain of AWS ML.

34
E-book

Azure Data Scientist Associate Certification Guide. A hands-on guide to machine learning in Azure and passing the Microsoft Certified DP-100 exam

Andreas Botsikas, Michael Hlobil

The Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate.Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters.Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio.You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production.By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam.

35
E-book

Bayesian Analysis with Python. A practical guide to probabilistic modeling - Third Edition

Osvaldo Martin, Christopher Fonnesbeck, Thomas Wiecki

The third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection.In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets.By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you to design and implement Bayesian models for your data science challenges. You'll be well-prepared to delve into more advanced material or specialized statistical modeling if the need arises.

36
E-book

Before Machine Learning Volume 1 - Linear Algebra for A.I. The Fundamental Mathematics for Data Science and Artificial Intelligence

Jorge Brasil

In this book, you'll embark on a comprehensive journey through the fundamentals of linear algebra, a critical component for any aspiring machine learning expert. Starting with an introductory overview, the course explains why linear algebra is indispensable for machine learning, setting the stage for deeper exploration. You'll then dive into the concepts of vectors and matrices, understanding their definitions, properties, and practical applications in the field.As you progress, the course takes a closer look at matrix decomposition, breaking down complex matrices into simpler, more manageable forms. This section emphasizes the importance of decomposition techniques in simplifying computations and enhancing data analysis. The final chapter focuses on principal component analysis, a powerful technique for dimensionality reduction that is widely used in machine learning and data science. By the end of the course, you will have a solid grasp of how PCA can be applied to streamline data and improve model performance.This course is designed to provide technical professionals with a thorough understanding of linear algebra's role in machine learning. By the end, you'll be well-equipped with the knowledge and skills needed to apply linear algebra in practical machine learning scenarios.

37
E-book

Before Machine Learning Volume 2 - Calculus for A.I. The Fundamental Mathematics for Data Science and Artificial Intelligence

Jorge Brasil

This book takes readers on a structured journey through calculus fundamentals essential for AI. Starting with “Why Calculus?” it introduces key concepts like functions, limits, and derivatives, providing a solid foundation for understanding machine learning.As readers progress, they will encounter practical applications such as Taylor Series for curve fitting, gradient descent for optimization, and L'Hôpital’s Rule for managing undefined expressions. Each chapter builds up from core calculus to multidimensional topics, making complex ideas accessible and applicable to AI.The final chapters guide readers through multivariable calculus, including advanced concepts like the gradient, Hessian, and backpropagation, crucial for neural networks. From optimizing models to understanding cost functions, this book equips readers with the calculus skills needed to confidently tackle AI challenges, offering insights that make complex calculus both manageable and deeply relevant to machine learning.

38
E-book

Beginning Swift. Master the fundamentals of programming in Swift 4

Rob Kerr, Kare Morstol

Take your first foray into programming for Apple devices with Swift.Swift is fundamentally different from Objective-C, as it is a protocol-oriented language. While you can still write normal object-oriented code in Swift, it requires a new way of thinking to take advantage of its powerful features and a solid understanding of the basics to become productive.

39
E-book

Big data, nauka o danych i AI bez tajemnic. Podejmuj lepsze decyzje i rozwijaj swój biznes!

David Stephenson

Koncepcja big data zmieniła zasady gry w biznesie. Wiele osób z kadry zarządczej nie rozumie specyfiki tego rodzaju danych: ogromnych, szybko narastających, często niepasujących do tradycyjnej struktury. Są one zasadniczo różne od konwencjonalnych danych, zarówno pod względem wielkości, jak i złożoności. Rzucają nowe wyzwania, stwarzają nowe możliwości, zacierają tradycyjne granice konkurencji i zmuszają do zmiany paradygmatów pozyskiwania wartości z danych. Big data i data science wraz z uczeniem maszynowym radykalnie zmieniają ekosystem biznesu. Aby przetrwać tę rewolucję, trzeba dostosować się do nowych warunków. Ta książka jest przystępnym wprowadzeniem do koncepcji big data i data science. Pozwoli na uzyskanie wiedzy niezbędnej do oceny, czy korzyści z tych technologii są warte kosztów i wysiłku związanych z wdrożeniem w firmie. Poszczególne techniki zostały dokładnie i przejrzyście opisane. Przedstawiono zasady tworzenia odpowiednich strategii. Wyjaśniono, jakich zasobów i jakich ludzi potrzeba do przeprowadzenia transformacji w kierunku zbierania, analizy i wykorzystywania danych, a także omówiono związane z tym ryzyko. Ważnym elementem książki są praktyczne wskazówki i podpowiedzi. W tej książce: podstawy big data, data science i sztucznej inteligencji praktyczne zastosowanie big data w technikach analitycznych przegląd podstawowych rodzajów analityki i dobór technologii przygotowanie firmy do wdrożenia projektów big data i data science wymagania prawne i ochrona danych a korzystanie z narzędzi big data Big data: łatwiejsze, niż myślisz, skuteczniejsze, niż marzysz!

40
E-book