Python

385
Ebook

Natural Language Processing with AWS AI Services. Derive strategic insights from unstructured data with Amazon Textract and Amazon Comprehend

Mona M, Premkumar Rangarajan, Julien Simon

Natural language processing (NLP) uses machine learning to extract information from unstructured data. This book will help you to move quickly from business questions to high-performance models in production.To start with, you'll understand the importance of NLP in today’s business applications and learn the features of Amazon Comprehend and Amazon Textract to build NLP models using Python and Jupyter Notebooks. The book then shows you how to integrate AI in applications for accelerating business outcomes with just a few lines of code. Throughout the book, you'll cover use cases such as smart text search, setting up compliance and controls when processing confidential documents, real-time text analytics, and much more to understand various NLP scenarios. You'll deploy and monitor scalable NLP models in production for real-time and batch requirements. As you advance, you'll explore strategies for including humans in the loop for different purposes in a document processing workflow. Moreover, you'll learn best practices for auto-scaling your NLP inference for enterprise traffic.Whether you're new to ML or an experienced practitioner, by the end of this NLP book, you'll have the confidence to use AWS AI services to build powerful NLP applications.

386
Ebook

Natural Language Processing with Flair. A practical guide to understanding and solving NLP problems with Flair

Tadej Magajna

Flair is an easy-to-understand natural language processing (NLP) framework designed to facilitate training and distribution of state-of-the-art NLP models for named entity recognition, part-of-speech tagging, and text classification. Flair is also a text embedding library for combining different types of embeddings, such as document embeddings, Transformer embeddings, and the proposed Flair embeddings.Natural Language Processing with Flair takes a hands-on approach to explaining and solving real-world NLP problems. You'll begin by installing Flair and learning about the basic NLP concepts and terminology. You will explore Flair's extensive features, such as sequence tagging, text classification, and word embeddings, through practical exercises. As you advance, you will train your own sequence labeling and text classification models and learn how to use hyperparameter tuning in order to choose the right training parameters. You will learn about the idea behind one-shot and few-shot learning through a novel text classification technique TARS. Finally, you will solve several real-world NLP problems through hands-on exercises, as well as learn how to deploy Flair models to production.By the end of this Flair book, you'll have developed a thorough understanding of typical NLP problems and you’ll be able to solve them with Flair.

387
Ebook

Natural Language Processing with Python. Master text processing, language modeling, and NLP applications with Python's powerful tools

Cuantum Technologies LLC

Embark on a comprehensive journey to master natural language processing (NLP) with Python. Begin with foundational concepts like text preprocessing, tokenization, and key Python libraries such as NLTK, spaCy, and TextBlob. Explore the challenges of text data and gain hands-on experience in cleaning, tokenizing, and building basic NLP pipelines. Early chapters provide practical exercises to solidify your understanding of essential techniques.Advance to sophisticated topics like feature engineering using Bag of Words, TF-IDF, and embeddings like Word2Vec and BERT. Delve into language modeling with RNNs, syntax parsing, and sentiment analysis, learning to apply these techniques in real-world scenarios. Chapters on topic modeling and text summarization equip you to extract insights from data, while transformer-based models like BERT take your skills to the next level. Each concept is paired with Python-based examples, ensuring practical mastery.The final chapters focus on real-world projects, such as developing chatbots, sentiment analysis dashboards, and news aggregators. These hands-on applications challenge you to design, train, and deploy robust NLP solutions. With its structured approach and practical focus, this book equips you to confidently tackle real-world NLP challenges and innovate in the field.

388
Ebook

Natural Language Processing with Python Quick Start Guide. Going from a Python developer to an effective Natural Language Processing Engineer

Nirant Kasliwal

NLP in Python is among the most sought after skills among data scientists. With code and relevant case studies, this book will show how you can use industry-grade tools to implement NLP programs capable of learning from relevant data. We will explore many modern methods ranging from spaCy to word vectors that have reinvented NLP.The book takes you from the basics of NLP to building text processing applications. We start with an introduction to the basic vocabulary along with a work?ow for building NLP applications.We use industry-grade NLP tools for cleaning and pre-processing text, automatic question and answer generation using linguistics, text embedding, text classifier, and building a chatbot. With each project, you will learn a new concept of NLP. You will learn about entity recognition, part of speech tagging and dependency parsing for Q and A. We use text embedding for both clustering documents and making chatbots, and then build classifiers using scikit-learn.We conclude by deploying these models as REST APIs with Flask.By the end, you will be confident building NLP applications, and know exactly what to look for when approaching new challenges.

389
Ebook

Natural Language Processing with TensorFlow. Teach language to machines using Python's deep learning library

Thushan Ganegedara

Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks.Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator.After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks.

390
Ebook

Natural Language Processing with TensorFlow. The definitive NLP book to implement the most sought-after machine learning models and tasks - Second Edition

Thushan Ganegedara, Andrei Lopatenko

Learning how to solve natural language processing (NLP) problems is an important skill to master due to the explosive growth of data combined with the demand for machine learning solutions in production. Natural Language Processing with TensorFlow, Second Edition, will teach you how to solve common real-world NLP problems with a variety of deep learning model architectures.The book starts by getting readers familiar with NLP and the basics of TensorFlow. Then, it gradually teaches you different facets of TensorFlow 2.x. In the following chapters, you then learn how to generate powerful word vectors, classify text, generate new text, and generate image captions, among other exciting use-cases of real-world NLP.TensorFlow has evolved to be an ecosystem that supports a machine learning workflow through ingesting and transforming data, building models, monitoring, and productionization. We will then read text directly from files and perform the required transformations through a TensorFlow data pipeline. We will also see how to use a versatile visualization tool known as TensorBoard to visualize our models.By the end of this NLP book, you will be comfortable with using TensorFlow to build deep learning models with many different architectures, and efficiently ingest data using TensorFlow Additionally, you’ll be able to confidently use TensorFlow throughout your machine learning workflow.

391
Ebook

Nauka programowania. Rusz głową!

Eric Freeman

Przewodnik po kodowaniu i myśleniu komputacyjnym Programista to bardzo szczególny typ specjalisty. Jeśli uważasz, że myśli w inny sposób niż tak zwani normalni ludzie, to masz rację. Dobra wiadomość jest taka, że i Ty możesz się nauczyć myślenia komputacyjnego - umiejętności, która się przydaje niezależnie od charakteru rozwiązywanego problemu, środowiska czy języka programowania. Tylko w ten sposób można od początku nauki programowania pisać przejrzysty, uporządkowany, znakomity kod, zgodny z najlepszymi praktykami wypracowanymi przez mistrzów. Innymi słowy: pracować jak profesjonalny programista. Ta książka jest niezwykłym podręcznikiem programowania. Być może wygląda nieco dziwacznie, ale prędko się przekonasz, że to podręcznik jest wyjątkowo skuteczny: w końcu jego formuła została opracowana na podstawie najlepszych osiągnięć neurologii i kognitywistyki. W ten sposób Twój mózg się zaangażuje i błyskawicznie przyswoi sobie zasady programowania w Pythonie. Autor wykorzystał oczywistą prawdę, że najszybciej uczymy się wtedy, gdy uwzględnimy specyfikę działania własnego mózgu! Najpierw więc się zainteresujesz, potem zaangażujesz, wreszcie przygotujesz sobie warsztat pracy, czyli zainstalujesz Pythona. Później zaczniesz ćwiczyć myślenie komputacyjne i oczywiście napiszesz swój pierwszy program. A dalej będzie coraz ciekawiej... W tej książce między innymi: Istotne koncepcje programistyczne Zasady programowania w Pythonie Funkcje i rekurencja Programowanie obiektowe Tworzenie API dla aplikacji internetowych Widgety i zdarzenia Neurony płoną. Emocje szaleją. Tak napiszesz kod godny mistrza!

392
Ebook

Nauka robotyki z językiem Python

Lentin Joseph

Roboty wkraczają do różnych dziedzin naszego życia, więc robotyka nabiera coraz większego znaczenia. Nauka o robotach, ich budowaniu i programowaniu jest dość złożoną, ale fascynującą dziedziną. Jej opanowanie wymaga wysiłku, jednak aby zaprojektować łatwy do wykorzystania interfejs, wystarczy posłużyć się kilkoma programami narzędziowymi oraz językiem Python. W ten sposób można zaprojektować zachowania robota, określić, w jaki sposób będzie zmierzał do celu, reagował na sygnały otaczającego świata, czy sprawić, by oczekiwał na instrukcje. Dzięki tej książce można się nauczyć, jak z wykorzystaniem języka Python oraz kilku popularnych frameworków stosowanych w robotyce, takich jak system ROS, budować autonomiczne roboty mobilne. Omówiono w niej również inne frameworki programistyczne, w tym również te dla Pythona. Aby równocześnie pokazać praktyczne wykorzystanie przedstawianego materiału, omówiono krok po kroku proces budowania robota-służącego ChefBot, który na przykład może podawać posiłki w domu, hotelu czy restauracji. W tej książce przedstawiono: zwięzłe podstawy robotyki i zasady projektowania oprogramowania robotów, aspekty projektowania CAD 2D i 3D z wykorzystaniem programów LibreCAD i Blender, budowanie modeli 3D z wykorzystaniem API Blender dla Pythona, zagadnienia sprzętowej warstwy projektowania robota, zasady obsługi sensorów robotów, w tym programowanie sensorów wizji, obsługę rozpoznawania mowy i syntezę mowy z wykorzystaniem Pythona i ROS, implementację sztucznej inteligencji za pomocą Pythona, zagadnienie testowania i kalibrowania robota. Przekonaj się, jak fascynujące jest programowanie robotów! Lentin Joseph — inżynier elektroniki, entuzjasta robotyki i ekspert w dziedzinie systemów wbudowanych. Szczególnie interesuje się robotyką, przetwarzaniem obrazu i zastosowaniem języka Python w programowaniu robotów. Jest również znawcą wielu platform oprogramowania robotów, takich jak system ROS (ang. Robot Operating system), V-REP i Actin. Biegle posługuje się bibliotekami przetwarzania obrazu, w tym OpenCV, OpenNI i PCL. Specjalizuje się również w dziedzinie projektowania 3D i programowania systemów wbudowanych na platformach Arduino i Launchpad Stellaris. Jest właścicielem firmy Qbotics Labs zajmującej się rozwijaniem robotyki i jej zastosowaniami w wielu dziedzinach.