Sztuczna inteligencja

153
Ebook

Using Stable Diffusion with Python. Leverage Python to control and automate high-quality AI image generation using Stable Diffusion

Andrew Zhu (Shudong Zhu), Matthew Fisher

Stable Diffusion is a game-changing AI tool that enables you to create stunning images with code. The author, a seasoned Microsoft applied data scientist and contributor to the Hugging Face Diffusers library, leverages his 15+ years of experience to help you master Stable Diffusion by understanding the underlying concepts and techniques.You’ll be introduced to Stable Diffusion, grasp the theory behind diffusion models, set up your environment, and generate your first image using diffusers. You'll optimize performance, leverage custom models, and integrate community-shared resources like LoRAs, textual inversion, and ControlNet to enhance your creations. Covering techniques such as face restoration, image upscaling, and image restoration, you’ll focus on unlocking prompt limitations, scheduled prompt parsing, and weighted prompts to create a fully customized and industry-level Stable Diffusion app. This book also looks into real-world applications in medical imaging, remote sensing, and photo enhancement. Finally, you'll gain insights into extracting generation data, ensuring data persistence, and leveraging AI models like BLIP for image description extraction.By the end of this book, you'll be able to use Python to generate and edit images and leverage solutions to build Stable Diffusion apps for your business and users.

154
Ebook

UX for Enterprise ChatGPT Solutions. A practical guide to designing enterprise-grade LLMs

Richard H. Miller, Jeff Johnson

Many enterprises grapple with new technology, often hopping on the bandwagon only to abandon it when challenges emerge. This book is your guide to seamlessly integrating ChatGPT into enterprise solutions with a UX-centered approach.UX for Enterprise ChatGPT Solutions empowers you to master effective use case design and adapt UX guidelines through an engaging learning experience. Discover how to prepare your content for success by tailoring interactions to match your audience’s voice, style, and tone using prompt-engineering and fine-tuning. For UX professionals, this book is the key to anchoring your expertise in this evolving field. Writers, researchers, product managers, and linguists will learn to make insightful design decisions. You’ll explore use cases like ChatGPT-powered chat and recommendation engines, while uncovering the AI magic behind the scenes. The book introduces a and feeding model, enabling you to leverage feedback and monitoring to iterate and refine any Large Language Model solution. Packed with hundreds of tips and tricks, this guide will help you build a continuous improvement cycle suited for AI solutions.By the end, you’ll know how to craft powerful, accurate, responsive, and brand-consistent generative AI experiences, revolutionizing your organization’s use of ChatGPT.

155
Ebook

Сумісний з людиною. Штучний інтелект і проблема контролю

Стюарт Рассел

У цій книзі провідний дослідник Стюарт Рассел стверджує, що цього сценарію можна уникнути, однак ми маємо переосмислити штучний інтелект. Автор описує короткострокові вигоди, які можна очікувати, і відкриття, які ще потрібно здійснити. Рассел припускає, що ми можемо перебудувати штучний інтелект на новій основі, відповідно до якої машини будуть стриманими, альтруїстичними й прагнутимуть досягати наших цілей, а не власних.

156
Ebook

Zaufanie do systemów sztucznej inteligencji

Marek Jakubiak, Paweł Stacewicz

W prezentowanym wyborze tekstów zagadnienie zaufania podjęto w sposób możliwie aktualny i wszechstronny. Odnosi się to zarówno do kwestii ogólnych, wręcz filozoficznych, związanych z narzuceniem na sposób działania maszyn pewnych norm, które od wieków postulują etycy (np. Arystoteles); jak również do kwestii bardzo szczegółowych, osadzonych w kontekście bieżących zastosowań. W obszarze zastosowań uwypuklono kwestie tak różnorodne, jak zaufanie do systemów SI wspomagających edukację, projektowanie bezpiecznych miast przyszłości (tzw. smart cities) czy zaufanie do programów i systemów usprawniających funkcjonowanie różnego rodzaju organizacji. Spośród wielu czynników wzmacniających zaufanie do sztucznej inteligencji szczególny nacisk położono na dwa - skuteczność systemu połączoną z bezpieczeństwem użytkowników oraz jego poznawczą przejrzystość połączoną z umiejętnością zrozumiałego dla człowieka wyjaśniania podejmowanych przez system decyzji. Konkluzje autorów nie są jednolite. Niektórzy są optymistami, przekonując, że nawet najbardziej rozwinięta sztuczna inteligencja pozostanie czymś na kształt kontrolowanej przez człowieka "mechanicznej lalki". Inni są bardziej sceptyczni, licząc się z możliwością zaistnienia systemów sztucznych, które przypominają bardziej "mroczne widmo" - czyli skrajnie niebezpieczny dla człowieka artefakt, zdolny do przejęcia nad nim fizycznej i psychicznej kontroli.