Категорії
-
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комп'ютер в офісі
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Мультимедійне навчання
- Нерухомість
- Переконання та НЛП
- Податки
- Соціальна політика
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Звіти, аналізи
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
- Architektura i wnętrza
- Безпека життєдіяльності
- Biznes i Ekonomia
- Будинок та сад
- Електронний бізнес
- Ekonomia i finanse
- Езотерика
- Фінанси
- Особисті фінанси
- Бізнес
- Фотографія
- Інформатика
- Відділ кадрів та оплата праці
- Для жінок
- Комп'ютери, Excel
- Бухгалтерія
- Культура та література
- Наукові та академічні
- Охорона навколишнього середовища
- Впливові
- Освіта
- Податки
- Подорожі
- Психологія
- Релігія
- Сільське господарство
- Ринок книг і преси
- Транспорт та спедиція
- Здоров'я та краса
-
- Офісні застосунки
- Бази даних
- Біоінформатика
- Бізнес ІТ
- CAD/CAM
- Digital Lifestyle
- DTP
- Електроніка
- Цифрова фотографія
- Комп'ютерна графіка
- Ігри
- Хакування
- Hardware
- IT w ekonomii
- Наукові пакети
- Шкільні підручники
- Основи комп'ютера
- Програмування
- Мобільне програмування
- Інтернет-сервери
- Комп'ютерні мережі
- Стартап
- Операційні системи
- Штучний інтелект
- Технологія для дітей
- Вебмайстерність
-
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Оповідна поезія
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
- Археологія
- Bibliotekoznawstwo
- Кінознавство / Теорія кіно
- Філологія
- Польська філологія
- Філософія
- Finanse i bankowość
- Географія
- Економіка
- Торгівля. Світова економіка
- Історія та археологія
- Історія мистецтва і архітектури
- Культурологія
- Мовознавство
- літературні студії
- Логістика
- Математика
- Ліки
- Гуманітарні науки
- Педагогіка
- Навчальні засоби
- Науково-популярна
- Інше
- Психологія
- Соціологія
- Театральні студії
- Богослов’я
- Економічні теорії та науки
- Transport i spedycja
- Фізичне виховання
- Zarządzanie i marketing
-
- Безпека життєдіяльності
- Історія
- Дорожній кодекс. Водійські права
- Юридичні науки
- Охорона здоров'я
- Загальне, компендіум
- Академічні підручники
- Інше
- Закон про будівництво і житло
- Цивільне право
- Фінансове право
- Господарське право
- Господарське та комерційне право
- Кримінальний закон
- Кримінальне право. Кримінальні злочини. Кримінологія
- Міжнародне право
- Міжнародне та іноземне право
- Закон про охорону здоров'я
- Закон про освіту
- Податкове право
- Трудове право та законодавство про соціальне забезпечення
- Громадське, конституційне та адміністративне право
- Кодекс про шлюб і сім'ю
- Аграрне право
- Соціальне право, трудове право
- Законодавство Євросоюзу
- Промисловість
- Сільське господарство та захист навколишнього середовища
- Словники та енциклопедії
- Державні закупівлі
- Управління
-
- Африка
- Альбоми
- Південна Америка
- Центральна та Північна Америка
- Австралія, Нова Зеландія, Океанія
- Австрія
- Азії
- Балкани
- Близький Схід
- Болгарія
- Китай
- Хорватія
- Чеська Республіка
- Данія
- Єгипет
- Естонія
- Європа
- Франція
- Гори
- Греція
- Іспанія
- Нідерланди
- Ісландія
- Литва
- Латвія
- Mapy, Plany miast, Atlasy
- Мініпутівники
- Німеччина
- Норвегія
- Активні подорожі
- Польща
- Португалія
- Інше
- Przewodniki po hotelach i restauracjach
- Росія
- Румунія
- Словаччина
- Словенія
- Швейцарія
- Швеція
- Світ
- Туреччина
- Україна
- Угорщина
- Велика Британія
- Італія
-
- Філософія життя
- Kompetencje psychospołeczne
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Нерухомість
- Переконання та НЛП
- Податки
- Соціальна політика
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
- Філософія життя
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
- Електронні книги
- Інформатика
Інформатика
Data Wrangling on AWS. Clean and organize complex data for analysis
Navnit Shukla, Sankar M, Sampat Palani
Data wrangling is the process of cleaning, transforming, and organizing raw, messy, or unstructured data into a structured format. It involves processes such as data cleaning, data integration, data transformation, and data enrichment to ensure that the data is accurate, consistent, and suitable for analysis. Data Wrangling on AWS equips you with the knowledge to reap the full potential of AWS data wrangling tools.First, you’ll be introduced to data wrangling on AWS and will be familiarized with data wrangling services available in AWS. You’ll understand how to work with AWS Glue DataBrew, AWS data wrangler, and AWS Sagemaker. Next, you’ll discover other AWS services like Amazon S3, Redshift, Athena, and Quicksight. Additionally, you’ll explore advanced topics such as performing Pandas data operation with AWS data wrangler, optimizing ML data with AWS SageMaker, building the data warehouse with Glue DataBrew, along with security and monitoring aspects.By the end of this book, you’ll be well-equipped to perform data wrangling using AWS services.
Mercury Learning and Information, Oswald Campesato
This book is designed for aspiring data scientists and those involved in data cleaning. It covers features of NumPy and Pandas, along with creating databases and tables in MySQL. It also addresses various data wrangling tasks using Python scripts and awk-based shell scripts. Companion files with code are available from the publisher.Understanding data cleaning and manipulation is vital for data scientists. This book provides a comprehensive introduction to essential tools and techniques. From Python basics to advanced data wrangling, it equips readers with the skills needed to manage and clean data effectively.The journey begins with an introduction to Python and progresses through working with data, Pandas, and SQL. It also covers Java, JSON, XML, and specific data cleaning tasks. The book culminates with detailed data wrangling techniques, ensuring readers gain practical, hands-on experience in data management.
Data Wrangling with Python. Creating actionable data from raw sources
Dr. Tirthajyoti Sarkar, Shubhadeep Roychowdhury
For data to be useful and meaningful, it must be curated and refined. Data Wrangling with Python teaches you the core ideas behind these processes and equips you with knowledge of the most popular tools and techniques in the domain.The book starts with the absolute basics of Python, focusing mainly on data structures. It then delves into the fundamental tools of data wrangling like NumPy and Pandas libraries. You'll explore useful insights into why you should stay away from traditional ways of data cleaning, as done in other languages, and take advantage of the specialized pre-built routines in Python. This combination of Python tips and tricks will also demonstrate how to use the same Python backend and extract/transform data from an array of sources including the Internet, large database vaults, and Excel financial tables. To help you prepare for more challenging scenarios, you'll cover how to handle missing or wrong data, and reformat it based on the requirements from the downstream analytics tool. The book will further help you grasp concepts through real-world examples and datasets.By the end of this book, you will be confident in using a diverse array of sources to extract, clean, transform, and format your data efficiently.
In this information era, where large volumes of data are being generated every day, companies want to get a better grip on it to perform more efficiently than before. This is where skillful data analysts and data scientists come into play, wrangling and exploring data to generate valuable business insights. In order to do that, you’ll need plenty of tools that enable you to extract the most useful knowledge from data.Data Wrangling with R will help you to gain a deep understanding of ways to wrangle and prepare datasets for exploration, analysis, and modeling. This data book enables you to get your data ready for more optimized analyses, develop your first data model, and perform effective data visualization.The book begins by teaching you how to load and explore datasets. Then, you’ll get to grips with the modern concepts and tools of data wrangling. As data wrangling and visualization are intrinsically connected, you’ll go over best practices to plot data and extract insights from it. The chapters are designed in a way to help you learn all about modeling, as you will go through the construction of a data science project from end to end, and become familiar with the built-in RStudio, including an application built with Shiny dashboards.By the end of this book, you’ll have learned how to create your first data model and build an application with Shiny in R.
Data Wrangling with SQL. A hands-on guide to manipulating, wrangling, and engineering data using SQL
Raghav Kandarpa, Shivangi Saxena
The amount of data generated continues to grow rapidly, making it increasingly important for businesses to be able to wrangle this data and understand it quickly and efficiently. Although data wrangling can be challenging, with the right tools and techniques you can efficiently handle enormous amounts of unstructured data.The book starts by introducing you to the basics of SQL, focusing on the core principles and techniques of data wrangling. You’ll then explore advanced SQL concepts like aggregate functions, window functions, CTEs, and subqueries that are very popular in the business world. The next set of chapters will walk you through different functions within SQL query that cause delays in data transformation and help you figure out the difference between a good query and bad one. You’ll also learn how data wrangling and data science go hand in hand. The book is filled with datasets and practical examples to help you understand the concepts thoroughly, along with best practices to guide you at every stage of data wrangling.By the end of this book, you’ll be equipped with essential techniques and best practices for data wrangling, and will predominantly learn how to use clean and standardized data models to make informed decisions, helping businesses avoid costly mistakes.
Abirami Sukumaran, Priyanka Vergadia, Bagirathi Narayanan
In the age of lightning-speed delivery, customers want everything developed, built, and delivered at high speed and at scale. Knowledge, design, and choice of database is critical in that journey, but there is no one-size-fits-all solution. This book serves as a comprehensive and practical guide for data professionals who want to design and model their databases efficiently. The book begins by taking you through business, technical, and design considerations for databases. Next, it takes you on an immersive structured database deep dive for both transactional and analytical real-world use cases using Cloud SQL, Spanner, and BigQuery. As you progress, you’ll explore semi-structured and unstructured database considerations with practical applications using Firestore, cloud storage, and more. You’ll also find insights into operational considerations for databases and the database design journey for taking your data to AI with Vertex AI APIs and generative AI examples. By the end of this book, you will be well-versed in designing and modeling data and databases for your applications using Google Cloud.
Alkin Tezuysal, Ibrar Ahmed, Peter Zaitsev
Database Design and Modeling with PostgreSQL and MySQL will equip you with the knowledge and skills you need to architect, build, and optimize efficient databases using two of the most popular open-source platforms.As you progress through the chapters, you'll gain a deep understanding of data modeling, normalization, and query optimization, supported by hands-on exercises and real-world case studies that will reinforce your learning. You'll explore topics like concurrency control, backup and recovery strategies, and seamless integration with web and mobile applications. These advanced topics will empower you to tackle complex database challenges confidently and effectively. Additionally, you’ll explore emerging trends, such as NoSQL databases and cloud-based solutions, ensuring you're well-versed in the latest developments shaping the database landscape. By embracing these cutting-edge technologies, you'll be prepared to adapt and innovate in today's ever-evolving digital world.By the end of this book, you’ll be able to understand the technologies that exist to design a modern and scalable database for developing web applications using MySQL and PostgreSQL open-source databases.
Database Security. Master the Art of Protecting Your Data with Cutting-Edge Techniques
Mercury Learning and Information, Christopher Diaz
This book provides a comprehensive guide to resolving database security issues during design, implementation, and production phases. It emphasizes specific measures and controls unique to database security, beyond general information security. Topics include account credential management, data access management, and techniques like database normalization, referential integrity, transactions, locks, and check constraints.The importance of database security lies in protecting sensitive data from unauthorized access and ensuring data integrity. This book is designed for professionals, workshops, and self-learners, offering hands-on demonstrations with major Database Management Systems (MySQL, Oracle, and Microsoft SQL Server) across various computing platforms (Linux/UNIX, MacOS, Windows).Starting with an introduction to information, data, and database security, the book covers database design, management, administration, user accounts, privileges, roles, and security controls for confidentiality. It also delves into transactions and data integrity with concurrent access. Each chapter includes questions and projects to reinforce learning and comprehension.
Spark has become a de facto standard for big data processing. Migrating data processing to Spark saves resources, streamlines your business focus, and modernizes workloads, creating new business opportunities through Spark’s advanced capabilities. Written by a senior solutions architect at Databricks, with experience in leading data science and data engineering teams in Fortune 500s as well as startups, this book is your exhaustive guide to achieving the Databricks Certified Associate Developer for Apache Spark certification on your first attempt.You’ll explore the core components of Apache Spark, its architecture, and its optimization, while familiarizing yourself with the Spark DataFrame API and its components needed for data manipulation. You’ll also find out what Spark streaming is and why it’s important for modern data stacks, before learning about machine learning in Spark and its different use cases. What’s more, you’ll discover sample questions at the end of each section along with two mock exams to help you prepare for the certification exam.By the end of this book, you’ll know what to expect in the exam and gain enough understanding of Spark and its tools to pass the exam. You’ll also be able to apply this knowledge in a real-world setting and take your skillset to the next level.
Stephanie Rivera, Anastasia Prokaieva, Amanda Baker, Hayley Horn
Discover what makes the Databricks Data Intelligence Platform the go-to choice for top-tier machine learning solutions. Written by a team of industry experts at Databricks with decades of combined experience in big data, machine learning, and data science, Databricks ML in Action presents cloud-agnostic, end-to-end examples with hands-on illustrations of executing data science, machine learning, and generative AI projects on the Databricks Platform.You’ll develop expertise in Databricks' managed MLflow, Vector Search, AutoML, Unity Catalog, and Model Serving as you learn to apply them practically in everyday workflows. This Databricks book not only offers detailed code explanations but also facilitates seamless code importation for practical use. You’ll discover how to leverage the open-source Databricks platform to enhance learning, boost skills, and elevate productivity with supplemental resources.By the end of this book, you'll have mastered the use of Databricks for data science, machine learning, and generative AI, enabling you to deliver outstanding data products.
Vaadin is an open-source Java framework used to build modern user interfaces. Vaadin 8 simplifies application development and improves user experience. The book begins with an overview of the architecture of Vaadin applications and the way you can organize your code in modules.Then it moves to the more advanced topics about advanced topics such as internationalization, authentication, authorization, and database connectivity. The book also teaches you how to implement CRUD views, how to generate printable reports, and how to manage data with lazy loading.By the end of this book you will be able to architect, implement, and deploy stunning Vaadin applications, and have the knowledge to master web development with Vaadin.
Jonas Christensen, Nakul Bajaj, Manmohan Gosada, Kirk D. Borne
In the rapidly advancing data-driven world where data quality is pivotal to the success of machine learning and artificial intelligence projects, this critically timed guide provides a rare, end-to-end overview of data-centric machine learning (DCML), along with hands-on applications of technical and non-technical approaches to generating deeper and more accurate datasets.This book will help you understand what data-centric ML/AI is and how it can help you to realize the potential of ‘small data’. Delving into the building blocks of data-centric ML/AI, you’ll explore the human aspects of data labeling, tackle ambiguity in labeling, and understand the role of synthetic data. From strategies to improve data collection to techniques for refining and augmenting datasets, you’ll learn everything you need to elevate your data-centric practices. Through applied examples and insights for overcoming challenges, you’ll get a roadmap for implementing data-centric ML/AI in diverse applications in Python.By the end of this book, you’ll have developed a profound understanding of data-centric ML/AI and the proficiency to seamlessly integrate common data-centric approaches in the model development lifecycle to unlock the full potential of your machine learning projects by prioritizing data quality and reliability.
Datadog is an essential cloud monitoring and operational analytics tool which enables the monitoring of servers, virtual machines, containers, databases, third-party tools, and application services. IT and DevOps teams can easily leverage Datadog to monitor infrastructure and cloud services, and this book will show you how.The book starts by describing basic monitoring concepts and types of monitoring that are rolled out in a large-scale IT production engineering environment. Moving on, the book covers how standard monitoring features are implemented on the Datadog platform and how they can be rolled out in a real-world production environment. As you advance, you'll discover how Datadog is integrated with popular software components that are used to build cloud platforms. The book also provides details on how to use monitoring standards such as Java Management Extensions (JMX) and StatsD to extend the Datadog platform. Finally, you'll get to grips with monitoring fundamentals, learn how monitoring can be rolled out using Datadog proactively, and find out how to extend and customize the Datadog platform.By the end of this Datadog book, you will have gained the skills needed to monitor your cloud infrastructure and the software applications running on it using Datadog.
DaVinci Resolve. Poradnik użytkownika
Montuj filmy jak profesjonalista! Program DaVinci Resolve to absolutny fenomen wśród oprogramowania służącego do montażu wideo. Równie chętnie bowiem korzystają z niego specjaliści z największych wytwórni filmowych Hollywood, jak amatorzy w zaciszu własnych domów. Dzieje się tak, ponieważ DaVinci oferuje szerokie możliwości, i to zarówno w wydaniu płatnym (Studio), jak i darmowym ― prawdę mówiąc, wersje różnią się ledwie detalami. Jeśli pracujesz lub planujesz pracę z plikami wideo, koniecznie przyjrzyj się DaVinci Resolve: Poznaj interfejs programu Naucz się zaciągać do niego pliki wideo i audio Opanuj najważniejsze zasady udoskonalania i podkręcania obrazu Obrabiaj dźwięk Montuj w całość obrazy z wielu kamer Ciesz się filmami, których nie powstydziłby się najsprawniejszy operator
DAX provides an extra edge by extracting key information from the data that is already present in your model. Filled with examples of practical, real-world calculations geared toward business metrics and key performance indicators, this cookbook features solutions that you can apply for your own business analysis needs.You'll learn to write various DAX expressions and functions to understand how DAX queries work. The book also covers sections on dates, time, and duration to help you deal with working days, time zones, and shifts. You'll then discover how to manipulate text and numbers to create dynamic titles and ranks, and deal with measure totals. Later, you'll explore common business metrics for finance, customers, employees, and projects. The book will also show you how to implement common industry metrics such as days of supply, mean time between failure, order cycle time and overall equipment effectiveness. In the concluding chapters, you'll learn to apply statistical formulas for covariance, kurtosis, and skewness. Finally, you'll explore advanced DAX patterns for interpolation, inverse aggregators, inverse slicers, and even forecasting with a deseasonalized correlation coefficient.By the end of this book, you'll have the skills you need to use DAX's functionality and flexibility in business intelligence and data analytics.
DAX i Power BI w analizie danych. Tworzenie zaawansowanych i efektywnych analiz dla biznesu
DAX i Power BI w analizie danych. Tworzenie zaawansowanych i efektywnych analiz dla biznesu Microsoft Power BI jest doskonałym narzędziem do profesjonalnej analizy danych. Jeśli jednak chcesz uzyskać za jego pomocą naprawdę spektakularne efekty, musisz się biegle posługiwać językiem DAX (Data Analysis Expressions). Pozwala on na wykonywanie zaawansowanych obliczeń i zapytań dotyczących danych w powiązanych tabelach i kolumnach w tabelarycznych modelach danych. To książka przeznaczona dla analityków biznesowych, którzy już poznali język DAX, chcą jednak skorzystać z pełnego potencjału formuł tego języka i modeli Power BI, by tworzyć wydajne i zaawansowane analizy danych. Opisano w niej zasady analizy biznesowej i reguły projektowania dobrych modeli. Zaprezentowano też praktyczne przykłady użycia języka DAX w rzeczywistych sytuacjach biznesowych. Pokazano niuanse pracy z modelami Power BI, a także z funkcjami DAX, filtrami i miarami. Nie zabrakło bardzo przydatnych wskazówek dotyczących błędów popełnianych często podczas tworzenia zaawansowanych agregacji danych. Do książki zostały dołączone materiały do pobrania (pliki PBIX), które ułatwią pełne zrozumienie prezentowanych treści i ich stosowanie we własnej praktyce zawodowej. Najciekawsze zagadnienia: koncepcje modelowania danych i struktur modele Power BI a modele systemów zarządzania relacyjnymi bazami danych bezpieczne poziomy agregacji, atrybuty i hierarchie koncepcja kontekstu i jej stosowanie standardowa analiza czasowa inteligentna ocena inwestycji za pomocą finansowych funkcji DAX Poznaj prawdziwy potencjał języka DAX w analizie danych!
DAX w Power BI. Podstawy. Podręcznik z ćwiczeniami
Poznaj język, za pomocą którego analitycy sprawiają, że dane są posłuszne, a raporty ciekawsze! Język DAX (ang. Data Analysis Expressions) został stworzony przez firmę Microsoft, by umożliwić wykonywanie efektywnych obliczeń na danych przechowywanych w wielu tabelach i przetwarzanych w Power BI, Excel Power Pivot czy SQL Server Analysis Services. Możliwości DAX-a są naprawdę ogromne, osoba, która go opanuje, zyska potężnego sprzymierzeńca w pracy z wielkimi zbiorami danych ukrytymi pod wyświetlanymi w raportach wykresami czy tabelami. Ten podręcznik wyjaśnia podstawy działania języka DAX i stosowania go w Power BI. Napisany przystępnym językiem, uczy obsługi prostych modeli danych i korzystania z szeregu podstawowych, choć nieoczywistych funkcji. Ich opanowanie pozwala zacząć samodzielnie tworzyć ciekawe analizy, a równocześnie oswoić się z DAX-em i modelem danych. Dzięki lekturze książki i wykonaniu zawartych w niej ćwiczeń dowiesz się między innymi: Czym jest model danych Do czego służą kolumny kalkulowane, miary i co to są konteksty wykonania Jak działają funkcje agregujące i iteracyjne Jak używać CALCULATE - najważniejszej funkcji języka DAX Do czego można użyć funkcji tablicowych Jak w prosty sposób tworzyć dynamiczne komunikaty
DDD w pigułce Modelowanie oprogramowania jest kojarzone z pojęciem programowania dziedzinowego, w skrócie zwanego DDD. Jest to dość nowatorskie podejście do tworzenia architektury oprogramowania, a jego największą zaletą jest wysoka pewność uzyskiwania bardzo dobrych rezultatów. Programiści często błyskawicznie dostrzegają zalety DDD i korzyści płynące ze stosowania odpowiednich narzędzi, stąd technika ta cieszy się coraz większym uznaniem. Dopiero jednak pełne zrozumienie zasad stosowania wzorców projektowych DDD przez wszystkich zaangażowanych w projekt pozwala na osiągnięcie imponujących wyników przy projektowaniu skomplikowanych systemów oprogramowania. Ten zwięzły i czytelnie napisany podręcznik jest przeznaczony dla programistów, ekspertów dziedzinowych, menedżerów, analityków biznesowych, architektów informacji i testerów. Koncentruje się na praktycznej wiedzy niezbędnej do uzyskania pożądanych rezultatów. Wyjaśniono, jak segregować modele dziedzin za pomocą wzorca kontekstu ograniczonego, jak rozwinąć język wszechobecny, a także w jaki sposób zintegrować wiele kontekstów ograniczonych poprzez wykorzystanie relacji zespołowych i mechanizmów technicznych. Co najważniejsze, dowiesz się, jak podejście DDD działa w rzeczywistości i co zrobić, aby jak najszybciej cieszyć się jego zaletami. W książce przedstawiono następujące zagadnienia: wprowadzenie do DDD i zalety tego podejścia do projektowania projektowanie strategiczne DDD integrowanie istniejących systemów w ramach tworzenia nowych aplikacji modelowanie taktyczne - agregaty i zdarzenia dziedziny narzędzia do zarządzania projektami i przyśpieszania prac Narzędzia DDD - ciesz się udanym wdrożeniem!
Dealing With Data Pocket Primer. A Comprehensive Guide to Data Handling Techniques
Mercury Learning and Information, Oswald Campesato
This book introduces the basic concepts of managing data using various computer languages and applications. It is designed as a fast-paced introduction to key features of data management, including statistical concepts, data-related techniques, Pandas, RDBMS, SQL, NLP topics, Matplotlib, and data visualization. The companion files with source code and color figures enhance the learning experience.Understanding these concepts is crucial for anyone looking to manage data effectively. The book covers the fundamentals of probability and statistics, working with data using Pandas, managing databases with SQL and MySQL, and cleaning data using NLP techniques. It also delves into data visualization, providing practical insights and numerous code samples.The journey begins with an introduction to probability and statistics, moving on to working with data and Pandas. It then covers RDBMS and SQL, focusing on practical SQL and MySQL usage. The book concludes with NLP, data cleaning, and visualization techniques, equipping readers with a comprehensive understanding of data management.
Debian Linux. System operacyjny dla każdego. Pierwsze starcie
Przestań płacić za programy -- przestaw się na Linuksa! Co to jest Debian Linux i czy warto z niego korzystać? Jak uruchomić system i używać podstawowych narzędzi? Na czym polega przewaga Linuksa nad produktami konkurencji? O systemie Linux słyszał chyba każdy użytkownik komputera, a jednak nie każdy z niego korzysta -- mimo dobrych opinii w środowisku informatyków. Ten zastanawiający fakt można zapewne wytłumaczyć niechęcią do oswajania się z nowym systemem, brakiem bliższych informacji na temat zalet Linuksa, różnorodności jego dystrybucji i możliwości dodatkowego oprogramowania. Dziś system ten -- zaopatrzony w przyjazny interfejs użytkownika i wszelkie pomoce dodatkowe -- staje się jedynym logicznym wyborem dla wszystkich, którzy cenią sobie bezpieczeństwo oraz niezawodność i nie lubią przepłacać! Debian to jedna z trzech podstawowych dystrybucji Linuksa, którą zainstalować można na każdym -- zarówno najstarszym, jak i najnowszym -- komputerze. W książce "Debian Linux. Pierwsze starcie" zawarto wszelkie informacje dotyczące tej właśnie wersji systemu. Dowiesz się z niej, jak zainstalować i uruchomić system, poznasz tajniki konfiguracji oraz nauczysz się korzystać z oprogramowania -- od obsługi programów biurowych, po administrowanie systemem oraz siecią. W razie problemów będziesz mógł zajrzeć do rozdziałów traktujących o zaawansowanych ustawieniach, możliwych modyfikacjach oraz dodatkowym oprogramowaniu. Przeczytasz także o zasadach bezpieczeństwa podczas pracy przy komputerze. Krótko mówiąc, znajdziesz tu wszystko, by od zaraz zacząć swoją przygodę z Linuksem! Instalacja systemu Podstawowe czynności Narzędzia biurowe -- OpenOffice, pakiet KDE, KOffice Pliki PDF i drukowanie Nagrywanie płyt Administracja systemem Administracja siecią Graficzne narzędzia administratora Narzędzia programisty Jądro systemu SAMBA, serwer LAMP, NAGIOS, BIND Zabezpieczanie systemu Nazwy programów w systemie Linux Najczęściej używane polecenia Poznaj dobry i bezpłatny system -- Debian Linux!
Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies.By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.
Debugging Teams. Przez współpracę do lepszej produktywności
Brian W. Fitzpatrick, Ben Collins-Sussman
Debugging Teams. Przez współpracę do lepszej produktywności Programiści i inżynierowie oprogramowania spędzają mnóstwo czasu na zgłębianiu tajników algorytmów, kodu czy technik budowy aplikacji. Bardzo mało uwagi poświęcają jednak takim zagadnieniom, jak komunikacja, skuteczna praca w zespole czy prowadzenie wspólnych projektów. Tymczasem programowanie jest jednym z zadań, które realizuje się w grupie. Oznacza to, że sposób pracy zespołu ma bezpośredni i znaczący wpływ na produktywność i zadowolenie jego członków. Zaniedbanie tej kwestii stało się przyczyną niepowodzenia wielu obiecujących projektów. Niniejsza książka, choć pozornie adresowana do liderów zespołów programistów, tak naprawdę przyda się każdemu, kto bierze udział w dowolnym twórczym grupowym przedsięwzięciu: począwszy od studenckiego klubu, na korporacji architektów skończywszy. Znalazły się tu bardzo praktyczne wskazówki dotyczące efektywnego kierowania zespołem, poruszania się w ramach organizacji oraz budowania zdrowych relacji z użytkownikami. Nie zabrakło porad dotyczących różnych sposobów komunikowania się i skutecznego wpływania na drugiego człowieka, a także metod radzenia sobie z trudnymi ludźmi. Jest to znakomita lektura dla każdego twórczego człowieka! W tej książce: wzorce komunikacyjne a kultura zespołu przywództwo: wzorce i antywzorce skuteczne strategie współpracy z innymi zespołami w ramach organizacji identyfikacja i zażegnywanie zagrożeń związanych z komunikacją zarządzanie opinią publiczną Mniej czasu na kłótnie, więcej na współpracę! Brian Fitzpatrick przez kilka lat prowadził duże projekty inżynieryjne dla firmy Google, takie jak Data Liberation Front i Transparency Engineering. Przed przejściem do Google Fitzpatrick pracował m.in. w Apple i CollabNet. Jest autorem wielu artykułów. Mieszka w Chicago. Ben Collins-Sussman tworzył system kontroli wersji Subversion. Od lat pracuje dla firmy Google, zainicjował projekt Google Code, zajmował się technologią wyświetlania reklam oraz infrastrukturą wyszukiwarki. W wolnych chwilach gra na banjo i komponuje musicale. Mieszka w Chicago z żoną, dziećmi i kotami.
Alexandru Bolboacă, Ferenc-Lajos Deák
Think you know C++? Think again.For decades, C++ has been clouded by myths and misunderstandings—from its early design decisions to misconceptions that still linger today. Claims like C++ is too hard to learn or C++ is obsolete are often rooted in some truth, but they are outdated and fail to capture the language’s ongoing evolution and modern capabilities.Written by industry veterans with over 40 years of combined experience, this book uncovers the myths, exploring their origins and relevance in the context of today’s C++ landscape. It equips you with a deeper understanding of advanced features and best practices to elevate your projects. Each chapter tackles a specific misconception, shedding light on C++'s modern features, such as smart pointers, lambdas, and concurrency. You’ll learn practical strategies to navigate common challenges like code portability and compiler compatibility, as well as how to incorporate modern best practices into your C++ codebase to optimize performance and future-proof your projects. By the end of this book, you’ll have a comprehensive understanding of C++'s evolution, equipping you to make informed decisions and harness its powerful features to enhance your skills, coding practices, and projects.