Categories
Ebooks
-
Business and economy
- Bitcoin
- Businesswoman
- Coaching
- Controlling
- E-business
- Economy
- Finances
- Stocks and investments
- Personal competence
- Computer in the office
- Communication and negotiation
- Small company
- Marketing
- Motivation
- Multimedia trainings
- Real estate
- Persuasion and NLP
- Taxes
- Social policy
- Guides
- Presentations
- Leadership
- Public Relation
- Reports, analyses
- Secret
- Social Media
- Sales
- Start-up
- Your career
- Management
- Project management
- Human Resources
-
For children
-
For youth
-
Education
-
Encyclopedias, dictionaries
-
E-press
- Architektura i wnętrza
- Health and Safety
- Biznes i Ekonomia
- Home and garden
- E-business
- Ekonomia i finanse
- Finances
- Personal finance
- Business
- Photography
- Computer science
- HR & Payroll
- For women
- Computers, Excel
- Accounts
- Culture and literature
- Scientific and academic
- Environmental protection
- Opinion-forming
- Education
- Taxes
- Travelling
- Psychology
- Religion
- Agriculture
- Book and press market
- Transport and Spedition
- Healthand beauty
-
History
-
Computer science
- Office applications
- Data bases
- Bioinformatics
- IT business
- CAD/CAM
- Digital Lifestyle
- DTP
- Electronics
- Digital photography
- Computer graphics
- Games
- Hacking
- Hardware
- IT w ekonomii
- Scientific software package
- School textbooks
- Computer basics
- Programming
- Mobile programming
- Internet servers
- Computer networks
- Start-up
- Operational systems
- Artificial intelligence
- Technology for children
- Webmastering
-
Other
-
Foreign languages
-
Culture and art
-
School reading books
-
Literature
- Antology
- Ballade
- Biographies and autobiographies
- For adults
- Dramas
- Diaries, memoirs, letters
- Epic, epopee
- Essay
- Fantasy and science fiction
- Feuilletons
- Work of fiction
- Humour and satire
- Other
- Classical
- Crime fiction
- Non-fiction
- Fiction
- Mity i legendy
- Nobelists
- Novellas
- Moral
- Okultyzm i magia
- Short stories
- Memoirs
- Travelling
- Narrative poetry
- Poetry
- Politics
- Popular science
- Novel
- Historical novel
- Prose
- Adventure
- Journalism, publicism
- Reportage novels
- Romans i literatura obyczajowa
- Sensational
- Thriller, Horror
- Interviews and memoirs
-
Natural sciences
-
Social sciences
-
School textbooks
-
Popular science and academic
- Archeology
- Bibliotekoznawstwo
- Cinema studies
- Philology
- Polish philology
- Philosophy
- Finanse i bankowość
- Geography
- Economy
- Trade. World economy
- History and archeology
- History of art and architecture
- Cultural studies
- Linguistics
- Literary studies
- Logistics
- Maths
- Medicine
- Humanities
- Pedagogy
- Educational aids
- Popular science
- Other
- Psychology
- Sociology
- Theatre studies
- Theology
- Economic theories and teachings
- Transport i spedycja
- Physical education
- Zarządzanie i marketing
-
Guides
-
Game guides
-
Professional and specialist guides
-
Law
- Health and Safety
- History
- Road Code. Driving license
- Law studies
- Healthcare
- General. Compendium of knowledge
- Academic textbooks
- Other
- Construction and local law
- Civil law
- Financial law
- Economic law
- Economic and trade law
- Criminal law
- Criminal law. Criminal offenses. Criminology
- International law
- International law
- Health care law
- Educational law
- Tax law
- Labor and social security law
- Public, constitutional and administrative law
- Family and Guardianship Code
- agricultural law
- Social law, labour law
- European Union law
- Industry
- Agricultural and environmental
- Dictionaries and encyclopedia
- Public procurement
- Management
-
Tourist guides and travel
- Africa
- Albums
- Southern America
- North and Central America
- Australia, New Zealand, Oceania
- Austria
- Asia
- Balkans
- Middle East
- Bulgary
- China
- Croatia
- The Czech Republic
- Denmark
- Egipt
- Estonia
- Europe
- France
- Mountains
- Greece
- Spain
- Holand
- Iceland
- Lithuania
- Latvia
- Mapy, Plany miast, Atlasy
- Mini travel guides
- Germany
- Norway
- Active travelling
- Poland
- Portugal
- Other
- Przewodniki po hotelach i restauracjach
- Russia
- Romania
- Slovakia
- Slovenia
- Switzerland
- Sweden
- World
- Turkey
- Ukraine
- Hungary
- Great Britain
- Italy
-
Psychology
- Philosophy of life
- Kompetencje psychospołeczne
- Interpersonal communication
- Mindfulness
- General
- Persuasion and NLP
- Academic psychology
- Psychology of soul and mind
- Work psychology
- Relacje i związki
- Parenting and children psychology
- Problem solving
- Intellectual growth
- Secret
- Sexapeal
- Seduction
- Appearance and image
- Philosophy of life
-
Religion
-
Sport, fitness, diets
-
Technology and mechanics
Audiobooks
-
Business and economy
- Bitcoin
- Businesswoman
- Coaching
- Controlling
- E-business
- Economy
- Finances
- Stocks and investments
- Personal competence
- Communication and negotiation
- Small company
- Marketing
- Motivation
- Real estate
- Persuasion and NLP
- Taxes
- Social policy
- Guides
- Presentations
- Leadership
- Public Relation
- Secret
- Social Media
- Sales
- Start-up
- Your career
- Management
- Project management
- Human Resources
-
For children
-
For youth
-
Education
-
Encyclopedias, dictionaries
-
E-press
-
History
-
Computer science
-
Other
-
Foreign languages
-
Culture and art
-
School reading books
-
Literature
- Antology
- Ballade
- Biographies and autobiographies
- For adults
- Dramas
- Diaries, memoirs, letters
- Epic, epopee
- Essay
- Fantasy and science fiction
- Feuilletons
- Work of fiction
- Humour and satire
- Other
- Classical
- Crime fiction
- Non-fiction
- Fiction
- Mity i legendy
- Nobelists
- Novellas
- Moral
- Okultyzm i magia
- Short stories
- Memoirs
- Travelling
- Poetry
- Politics
- Popular science
- Novel
- Historical novel
- Prose
- Adventure
- Journalism, publicism
- Reportage novels
- Romans i literatura obyczajowa
- Sensational
- Thriller, Horror
- Interviews and memoirs
-
Natural sciences
-
Social sciences
-
Popular science and academic
-
Guides
-
Professional and specialist guides
-
Law
-
Tourist guides and travel
-
Psychology
- Philosophy of life
- Interpersonal communication
- Mindfulness
- General
- Persuasion and NLP
- Academic psychology
- Psychology of soul and mind
- Work psychology
- Relacje i związki
- Parenting and children psychology
- Problem solving
- Intellectual growth
- Secret
- Sexapeal
- Seduction
- Appearance and image
- Philosophy of life
-
Religion
-
Sport, fitness, diets
-
Technology and mechanics
Videocourses
-
Data bases
-
Big Data
-
Biznes, ekonomia i marketing
-
Cybersecurity
-
Data Science
-
DevOps
-
For children
-
Electronics
-
Graphics/Video/CAX
-
Games
-
Microsoft Office
-
Development tools
-
Programming
-
Personal growth
-
Computer networks
-
Operational systems
-
Software testing
-
Mobile devices
-
UX/UI
-
Web development
-
Management
Podcasts
- Ebooks
- Big data
- Machine learning
- Matematyka i sztuczna inteligencja. Kluczowe koncepcje zwiększania skuteczności i wydajności systemów
E-book details

Matematyka i sztuczna inteligencja. Kluczowe koncepcje zwiększania skuteczności i wydajności systemów
Sztuczna inteligencja i technologie oparte na danych są coraz częściej integrowane z istniejącymi systemami i operacjami. Ta tendencja dotyczy licznych branż. Dziś przy budowaniu systemów SI można korzystać z gotowych bibliotek, jeżeli jednak zależy Ci na w pełni świadomym tworzeniu doskonalszych aplikacji, musisz dobrze opanować matematykę leżącą u podstaw sztucznej inteligencji.
Nawet jeśli nie darzysz królowej nauk płomiennym uczuciem, dzięki temu kompleksowemu opracowaniu z łatwością poradzisz sobie z jej lepszym poznaniem. Nie znajdziesz tu skomplikowanych teorii naukowych, tylko przystępnie podane koncepcje matematyczne niezbędne do rozwoju w dziedzinie sztucznej inteligencji, w szczególności do praktycznego stosowania najnowocześniejszych modeli. Poznasz takie zagadnienia jak regresja, sieci neuronowe, sieci konwolucyjne, optymalizacja, prawdopodobieństwo, procesy Markowa, równania różniczkowe i wiele innych w ekskluzywnym kontekście sztucznej inteligencji. Książkę docenią pasjonaci nowych technologii, twórcy aplikacji, inżynierowie i analitycy danych, a także matematycy i naukowcy.
W książce:
- wyjaśnienie pojęć z zakresu uczenia maszynowego, inżynierii danych i matematyki
- ujednolicanie modeli w ramach jednej struktury matematycznej
- grafy i dane sieciowe
- eksploracja rzeczywistych danych, zmniejszanie liczby wymiarów i przetwarzanie obrazów
- korzystanie z modeli w różnych projektach opartych na danych
- implikacje i ograniczenia sztucznej inteligencji
Ta książka w zachwycający sposób sprawia, że matematyka staje się zabawą dla licznych uczestników przyszłości opartej na sztucznej inteligencji!
Adri Purkayastha, analityk oceny ryzyka, BNP Paribas
O książce w mediach:
Przedmowa
Rozdział 1. Dlaczego warto poznać matematykę zarządzającą sztuczną inteligencją?
- Czym jest sztuczna inteligencja?
- Dlaczego sztuczna inteligencja jest dziś tak popularna?
- Co potrafi sztuczna inteligencja?
- Specyficzne zadania agenta AI
- Jakie są ograniczenia sztucznej inteligencji?
- Co się stanie, gdy systemy AI zawiodą?
- Dokąd zmierza sztuczna inteligencja?
- Kim są obecni główni twórcy w dziedzinie sztucznej inteligencji?
- Jakie obliczenia matematyczne są zwykle stosowane w sztucznej inteligencji?
- Podsumowanie i spojrzenie w przyszłość
Rozdział 2. Dane, dane, dane
- Dane dla AI
- Dane rzeczywiste a dane symulowane
- Modele matematyczne - liniowe kontra nieliniowe
- Przykład danych rzeczywistych
- Przykład danych symulowanych
- Modele matematyczne - symulacje i sztuczna inteligencja
- Skąd pochodzą dane?
- Słownictwo związane z rozkładem danych, prawdopodobieństwem i statystyką
- Zmienne losowe
- Rozkłady prawdopodobieństwa
- Prawdopodobieństwa krańcowe
- Rozkład równomierny i normalny
- Prawdopodobieństwa warunkowe i twierdzenie Bayesa
- Prawdopodobieństwa warunkowe i rozkłady łączne
- Rozkład aprioryczny, rozkład a posteriori i funkcja wiarygodności
- Kombinacje rozkładów
- Sumy i iloczyny zmiennych losowych
- Wykorzystanie grafów do przedstawienia łącznych rozkładów prawdopodobieństwa
- Wartość oczekiwana, średnia, wariancja i niepewność
- Kowariancja i korelacja
- Procesy Markowa
- Normalizacja, skalowanie i (lub) standaryzacja zmiennej losowej lub zbioru danych
- Typowe przykłady
- Rozkłady ciągłe a rozkłady dyskretne (gęstość kontra masa)
- Potęga funkcji gęstości prawdopodobieństwa łącznego
- Równomierny rozkład danych
- Rozkład normalny (Gaussa) w kształcie dzwonu
- Rozkłady danych - inne ważne i powszechnie używane rozkłady
- Różne zastosowania słowa "rozkład"
- Testy A/B
- Podsumowanie i spojrzenie w przyszłość
Rozdział 3. Dopasowywanie funkcji do danych
- Tradycyjne i bardzo przydatne modele uczenia maszynowego
- Rozwiązania numeryczne a rozwiązania analityczne
- Regresja - przewidywanie wartości liczbowej
- Funkcja szkoleniowa
- Funkcja straty
- Optymalizacja
- Regresja logistyczna - klasyfikacja do dwóch klas
- Funkcja szkoleniowa
- Funkcja straty
- Optymalizacja
- Regresja softmax - przyporządkowanie do wielu klas
- Funkcja szkoleniowa
- Funkcja straty
- Optymalizacja
- Wykorzystanie omówionych modeli do ostatniej warstwy sieci neuronowej
- Inne popularne techniki i zestawy technik uczenia maszynowego
- Maszyny wektorów nośnych
- Drzewa decyzyjne
- Lasy losowe
- Klasteryzacja k-średnich
- Miary wydajności dla modeli klasyfikacji
- Podsumowanie i perspektywy na przyszłość
Rozdział 4. Optymalizacja w sieciach neuronowych
- Kora mózgowa a sztuczne sieci neuronowe
- Funkcja szkoleniowa - w pełni połączone (gęste) sieci neuronowe z przekazem w przód
- Sieć neuronowa jest reprezentacją grafu obliczeniowego funkcji szkoleniowej
- Łączenie liniowe, dodawanie przesunięcia i aktywacja
- Popularne funkcje aktywacji
- Uniwersalna aproksymacja funkcji
- Teoria aproksymacji dla uczenia głębokiego
- Funkcje straty
- Optymalizacja
- Matematyka sieci neuronowych i ich tajemniczy sukces
- Zstępowanie gradientowe ?i+1=?i-??L?i
- Rola hiperparametru szybkości uczenia
- Wykresy wypukłe i niewypukłe
- Stochastyczne zstępowanie gradientowe
- Inicjalizacja wag ?0 dla procesu optymalizacji
- Techniki regularyzacji
- Dropout
- Wczesne zatrzymanie
- Normalizacja wsadowa każdej warstwy
- Kontrola rozmiaru wag poprzez penalizowanie ich normy
- Penalizacja normy l2 a penalizacja normy l1
- Wyjaśnienie roli hiperparametru regularyzacji ?
- Przykłady hiperparametrów występujących w uczeniu maszynowym
- Reguła łańcuchowa i propagacja wstecz: Obliczanie ?L?i
- Propagacja wsteczna nie różni się zbytnio od sposobu, w jaki uczy się ludzki mózg
- Dlaczego propagacja wstecz daje lepsze efekty?
- Propagacja wsteczna w szczegółach
- Ocena znaczenia cech danych wejściowych
- Podsumowanie i perspektywy na przyszłość
Rozdział 5. Konwolucyjne sieci neuronowe i komputerowe przetwarzanie obrazów
- Splot i korelacja krzyżowa
- Niezmienność translacji i równoważność translacji
- Splot w zwykłej przestrzeni jest iloczynem w przestrzeni częstotliwości
- Splot z perspektywy projektowania systemów
- Splot i odpowiedź impulsowa w systemach liniowych i niezmiennych względem translacji
- Operacja splotu a jednowymiarowe sygnały dyskretne
- Operacja splotu a dwuwymiarowe sygnały dyskretne
- Filtrowanie obrazów
- Mapy cech
- Notacja algebry liniowej
- Przypadek jednowymiarowy - mnożenie przez macierz Toeplitza
- Przypadek dwuwymiarowy - mnożenie przez podwójną blokową macierz cykliczną
- Pooling
- Konwolucyjna sieć neuronowa do klasyfikacji obrazów
- Podsumowanie i perspektywy na przyszłość
Rozdział 6. Rozkład według wartości osobliwych - przetwarzanie obrazów, przetwarzanie języka naturalnego i media społecznościowe
- Faktoryzacja macierzy
- Macierze diagonalne
- Macierze jako przekształcenia liniowe działające na przestrzeń
- Działanie macierzy A na prawe wektory osobliwe
- Działanie macierzy A na standardowe wektory jednostkowe i wyznaczony przez nie kwadrat jednostkowy
- Działanie macierzy A na jednostkowym okręgu
- Transformacja okręgu w elipsę zgodnie z rozkładem według wartości osobliwych
- Macierze obrotu i odbić
- Działanie macierzy A na ogólny wektor x
- Trzy sposoby mnożenia macierzy
- Ogólny zarys
- Współczynnik uwarunkowania i stabilność obliczeniowa
- Elementy rozkładu wartości osobliwych
- Rozkład według wartości osobliwych a rozkład według wartości własnych
- Obliczanie rozkładu według wartości osobliwych
- Numeryczne obliczanie wektora własnego
- Pseudoinwersja
- Zastosowanie rozkładu według wartości osobliwych w przetwarzaniu obrazów
- Analiza składowych głównych a redukcja wymiarów
- Analiza składowych głównych a grupowanie
- Aplikacje społecznościowe
- Utajona analiza semantyczna
- Losowy rozkład według wartości osobliwych
- Podsumowanie i perspektywy na przyszłość
Rozdział 7. AI w przetwarzaniu języka naturalnego i finansach - wektoryzacjai szeregi czasowe
- Modele AI w przetwarzaniu języka naturalnego
- Przygotowanie danych języka naturalnego do maszynowego przetwarzania
- Modele statystyczne i funkcja logarytmiczna
- Prawo Zipfa o liczności terminów
- Różne reprezentacje wektorowe dla dokumentów języka naturalnego
- Reprezentacja wektorowa częstości terminów w dokumencie lub "worku słów"
- Reprezentacja wektorowa dokumentu TF-IDF
- Tematyczna reprezentacja wektorowa dokumentu określona przez utajoną analizę semantyczną
- Reprezentacja wektora tematycznego dokumentu określona przez utajoną alokację Dirichleta
- Reprezentacja wektora tematycznego dokumentu określona przez utajoną analizę dyskryminacyjną
- Reprezentacje wektorów znaczeń słów i dokumentów określone przez osadzone sieci neuronowe
- Podobieństwo kosinusowe
- Zastosowania mechanizmów przetwarzania języka naturalnego
- Analiza tonu
- Filtry spamu
- Wyszukiwanie i odzyskiwanie informacji
- Tłumaczenie maszynowe
- Podpisy do obrazów
- Chatboty
- Inne zastosowania
- Transformery i modele uwagi
- Architektura transformera
- Mechanizm uwagi
- Transformerom daleko do doskonałości
- Konwolucyjne sieci neuronowe dla danych w postaci szeregów czasowych
- Rekurencyjne sieci neuronowe dla danych szeregów czasowych
- Jak działają rekurencyjne sieci neuronowe?
- Bramkowane jednostki rekurencyjne i jednostki LSTM
- Przykład danych języka naturalnego
- Sztuczna inteligencja w dziedzinie finansów
- Podsumowanie i perspektywy na przyszłość
Rozdział 8. Probabilistyczne modele generatywne
- Do czego przydają się modele generatywne?
- Typowe reguły matematyczne modeli generatywnych
- Przejście z myślenia deterministycznego na myślenie probabilistyczne
- Oszacowanie metodą największej wiarygodności
- Jawne i niejawne modele gęstości
- Jawny model gęstości - wykonalny: w pełni sieci przekonań
- Przykład: generowanie obrazów za pomocą modelu PixelCNN i maszynowego dźwięku za pomocą modelu WaveNet
- Jawny model gęstości - wykonalny: zmiana zmiennych w nieliniowej analizie składowych niezależnych
- Jawny model gęstości - niepraktyczny: aproksymacja autoenkoderów wariacyjnych za pomocą metod wariacyjnych
- Jawny model gęstości - niepraktyczny: aproksymacja maszyny Boltzmanna za pomocą łańcucha Markowa
- Niejawny łańcuch gęstości Markowa - generatywna sieć stochastyczna
- Niejawna gęstość prawdopodobieństwa - generatywne sieci kontradyktoryjne
- Jak działają generatywne sieci kontradyktoryjne?
- Przykład: uczenie maszynowe i sieci generatywne w fizyce wysokich energii
- Inne modele generatywne
- Naiwny klasyfikator Bayesa
- Mieszany model Gaussa
- Ewolucja modeli generatywnych
- Sieci Hopfielda
- Maszyna Boltzmanna
- Ograniczona maszyna Boltzmanna
- Oryginalny autoenkoder
- Probabilistyczne modelowanie języka
- Podsumowanie i perspektywy na przyszłość
Rozdział 9. Modele grafów
- Grafy - węzły, krawędzie i ich cechy
- Przykład: algorytm PageRank
- Odwracanie macierzy za pomocą grafów
- Grafy grup Cayleya - czysta algebra i obliczenia równoległe
- Przekazywanie komunikatów w obrębie grafu
- Nieograniczone zastosowania grafów
- Sieci ludzkiego mózgu
- Rozprzestrzenianie się choroby
- Rozprzestrzenianie się informacji
- Mechanizmy detekcji i śledzenia rozpowszechniania fałszywych wiadomości
- Systemy rekomendacji w skali internetu
- Walka z rakiem
- Grafy biochemiczne
- Generowanie grafów molekularnych na potrzeby odkrywania struktur leków i białek
- Sieci cytowań
- Sieci mediów społecznościowych i prognozowanie wpływu społecznego
- Struktury socjologiczne
- Sieci bayesowskie
- Prognozowanie ruchu
- Logistyka i badania operacyjne
- Modele językowe
- Struktura grafu internetowego
- Automatyczna analiza programów komputerowych
- Struktury danych w informatyce
- Równoważenie obciążenia w sieciach rozproszonych
- Sztuczne sieci neuronowe
- Losowe spacery po grafach
- Uczenie reprezentacji węzłów
- Zadania dla grafowych sieci neuronowych
- Klasyfikacja węzłów
- Klasyfikacja grafów
- Klasteryzacja i wykrywanie społeczności
- Generowanie grafów
- Maksymalizacja oddziaływania
- Prognozowanie połączeń
- Dynamiczne modele grafowe
- Sieci bayesowskie
- Sieć bayesowska jako reprezentacja zagęszczonej tabeli prawdopodobieństwa warunkowego
- Tworzenie prognoz za pomocą sieci bayesowskiej
- Sieci bayesowskie to sieci przekonań, a nie sieci przyczynowe
- Ważne informacje o sieciach bayesowskich
- Łańcuchy, rozwidlenia i kolidery
- Jak skonfigurować sieć bayesowską zmiennych dla znanego zestawu danych?
- Grafy wykorzystywane na potrzeby probabilistycznego modelowania przyczynowego
- Krótka historia teorii grafów
- Główne pojęcia w teorii grafów
- Drzewa rozpinające i najkrótsze drzewa rozpinające
- Zbiory przekrojów i wierzchołki przekrojów
- Planarność
- Grafy jako przestrzenie wektorowe
- Realizowalność
- Kolorowanie i dopasowywanie
- Wyliczanie
- Algorytmy i obliczeniowe aspekty grafów
- Podsumowanie i perspektywy na przyszłość
Rozdział 10. Badania operacyjne
- Nie ma darmowych obiadów
- Analiza złożoności i notacja O()
- Optymalizacja - sedno badań operacyjnych
- Myślenie o optymalizacji
- Optymalizacja - skończone wymiary, bez ograniczeń
- Optymalizacja - wymiary skończone, ograniczone mnożniki Lagrange'a
- Optymalizacja - nieskończone wymiary, rachunek wariacyjny
- Optymalizacja w sieciach
- Problem komiwojażera
- Minimalne drzewo rozpinające
- Najkrótsza ścieżka
- Maksymalny przepływ, minimalny przekrój
- Maksymalny przepływ, minimalny koszt
- Metoda ścieżki krytycznej w projektowaniu
- Problem n-królowych
- Optymalizacja liniowa
- Format ogólny i format standardowy
- Wizualizacja problemu optymalizacji liniowej w dwóch wymiarach
- Konwersja funkcji wypukłej na liniową
- Geometria optymalizacji liniowej
- Metoda simpleks
- Problem transportowy i problemy przydziału
- Dualizm, relaksacja Lagrange'a, ceny cienie, Max-Min, Min-Max i tak dalej
- Czułość
- Teoria gier i multiagenty
- Kolejkowanie
- Zapasy
- Uczenie maszynowe w badaniach operacyjnych
- Równanie Hamiltona-Jacobiego-Bellmana
- Badania operacyjne na potrzeby sztucznej inteligencji
- Podsumowanie i perspektywy na przyszłość
Rozdział 11. Prawdopodobieństwo
- Gdzie w tej książce pojawiło się prawdopodobieństwo?
- Jakie dodatkowe tematy są niezbędne dla sztucznej inteligencji?
- Modelowanie przyczynowe i rachunek do
- Alternatywa: rachunek do
- Paradoksy i interpretacje diagramów
- Problem Monty'ego Halla
- Paradoks Berksona
- Paradoks Simpsona
- Duże macierze losowe
- Przykłady losowych wektorów i macierzy
- Główne rozważania dotyczące teorii macierzy losowych
- Zespołowe macierze losowe
- Gęstość wartości własnych sumy dwóch dużych macierzy losowych
- Niezbędne narzędzia matematyki dla dużych macierzy losowych
- Procesy stochastyczne
- Proces Bernoulliego
- Proces Poissona
- Losowy spacer
- Proces Wienera, czyli ruchy Browna
- Martyngały
- Proces Levy'ego
- Proces rozgałęziający
- Łańcuch Markowa
- Lemat Itô
- Procesy decyzyjne Markowa a uczenie przez wzmacnianie
- Przykłady uczenia przez wzmacnianie
- Uczenie przez wzmacnianie jako proces decyzyjny Markowa
- Uczenie przez wzmacnianie w kontekście sterowania optymalnego i dynamiki nieliniowej
- Biblioteka Pythona do obsługi uczenia przez wzmacnianie
- Rygorystyczne podstawy teoretyczne
- Które zdarzenia mają prawdopodobieństwo?
- Czy można mówić o szerszym zakresie zmiennych losowych?
- Trójka prawdopodobieństwa (przestrzeń próbek, algebra sigma, miara prawdopodobieństwa)
- Gdzie leży trudność?
- Zmienna losowa, oczekiwanie i całkowanie
- Rozkład zmiennej losowej i twierdzenie o zmianie zmiennej
- Kolejne kroki w rygorystycznej teorii prawdopodobieństwa
- Twierdzenie o uniwersalności dla sieci neuronowych
- Podsumowanie i perspektywy na przyszłość
Rozdział 12. Logika matematyczna
- Różne frameworki logiki
- Logika zdaniowa
- Od kilku aksjomatów do kompletnej teorii
- Kodyfikacja logiki w agencie
- Uczenie maszynowe deterministyczne kontra probabilistyczne
- Logika pierwszego rzędu
- Relacje pomiędzy kwantyfikatorami "dla wszystkich" i "istnieje"
- Logika probabilistyczna
- Logika rozmyta
- Logika temporalna
- Porównanie z ludzkim językiem naturalnym
- Maszyny i złożone wnioskowanie matematyczne
- Podsumowanie i perspektywy na przyszłość
Rozdział 13. Sztuczna inteligencja i cząstkowe równania różniczkowe
- Co to jest cząstkowe równanie różniczkowe?
- Modelowanie z wykorzystaniem równań różniczkowych
- Modele w różnych skalach
- Parametry równań PDE
- Zmiana jednej rzeczy w PDE może mieć wielkie znaczenie
- Czy można wykorzystać sztuczną inteligencję?
- Rozwiązania numeryczne są bardzo cenne
- Funkcje ciągłe a funkcje dyskretne
- Motywy PDE z mojej pracy doktorskiej
- Dyskretyzacja i przekleństwo wymiarowości
- Różnice skończone
- Elementy skończone
- Metody wariacyjne, czyli energetyczne
- Metody Monte Carlo
- Wybrane zagadnienia mechaniki statystycznej - cudowne równanie główne
- Rozwiązania jako oczekiwania badanych procesów losowych
- Przekształcanie równań PDE
- Transformata Fouriera
- Transformata Laplace'a
- Operatory rozwiązań
- Przykład użycia równania ciepła
- Przykład użycia równania Poissona
- Iteracja oparta na punkcie stałym
- Sztuczna inteligencja dla PDE
- Uczenie głębokie w celu rozpoznania wartości fizycznych parametrów
- Uczenie głębokie do nauki siatek
- Uczenie głębokie w celu uzyskania przybliżeń operatorów rozwiązań PDE
- Rozwiązania numeryczne wielkowymiarowych równań różniczkowych
- Symulowanie zjawisk naturalnych bezpośrednio na podstawie danych
- Równanie PDE Hamiltona-Jacobiego-Bellmana w programowaniu dynamicznym
- Równania PDE na potrzeby AI?
- Inne rozważania dotyczące cząstkowych równań różniczkowych
- Podsumowanie i perspektywy na przyszłość
Rozdział 14. Sztuczna inteligencja, etyka, matematyka, prawo i przepisy
- Dobra sztuczna inteligencja
- Przepisy mają znaczenie
- Co może pójść źle?
- Od matematyki do broni
- Chemiczne środki bojowe
- Sztuczna inteligencja a polityka
- Niezamierzone wyniki działania modeli generatywnych
- Jak to naprawić?
- Rozwiązanie problemu niedostatecznej reprezentacji danych szkoleniowych
- Rozwiązanie problemu stronniczości w wektorach słów
- Prywatność
- Uczciwość
- Wstrzykiwanie moralności do systemów sztucznej inteligencji
- Demokratyzacja i dostępność systemów sztucznej inteligencji dla nieprofesjonalistów
- Priorytetyzacja danych wysokiej jakości
- Odróżnianie stronniczości od dyskryminacji
- Szum medialny
- Końcowe przemyślenia
Skorowidz
- Title: Matematyka i sztuczna inteligencja. Kluczowe koncepcje zwiększania skuteczności i wydajności systemów
- Author: Hala Nelson
- Original title: Essential Math for AI: Next-Level Mathematics for Efficient and Successful AI Systems
- Translation: Radosław Meryk
- ISBN: 978-83-289-1446-9, 9788328914469
- Date of issue: 2025-01-14
- Format: Ebook
- Item ID: maszin
- Publisher: Helion