Data bases

41
Ebook

Apache Spark 2.x for Java Developers. Explore big data at scale using Apache Spark 2.x Java APIs

Sourav Gulati, Sumit Kumar

Apache Spark is the buzzword in the big data industry right now, especially with the increasing need for real-time streaming and data processing. While Spark is built on Scala, the Spark Java API exposes all the Spark features available in the Scala version for Java developers. This book will show you how you can implement various functionalities of the Apache Spark framework in Java, without stepping out of your comfort zone.The book starts with an introduction to the Apache Spark 2.x ecosystem, followed by explaining how to install and configure Spark, and refreshes the Java concepts that will be useful to you when consuming Apache Spark's APIs. You will explore RDD and its associated common Action and Transformation Java APIs, set up a production-like clustered environment, and work with Spark SQL. Moving on, you will perform near-real-time processing with Spark streaming, Machine Learning analytics with Spark MLlib, and graph processing with GraphX, all using various Java packages.By the end of the book, you will have a solid foundation in implementing components in the Spark framework in Java to build fast, real-time applications.

42
Ebook

Apache Spark for Data Science Cookbook. Solve real-world analytical problems

Padma Priya Chitturi

Spark has emerged as the most promising big data analytics engine for data science professionals. The true power and value of Apache Spark lies in its ability to execute data science tasks with speed and accuracy. Spark’s selling point is that it combines ETL, batch analytics, real-time stream analysis, machine learning, graph processing, and visualizations. It lets you tackle the complexities that come with raw unstructured data sets with ease. This guide will get you comfortable and confident performing data science tasks with Spark. You will learn about implementations including distributed deep learning, numerical computing, and scalable machine learning. You will be shown effective solutions to problematic concepts in data science using Spark’s data science libraries such as MLLib, Pandas, NumPy, SciPy, and more. These simple and efficient recipes will show you how to implement algorithms and optimize your work.

43
Ebook

Apache Spark Machine Learning Blueprints. Develop a range of cutting-edge machine learning projects with Apache Spark using this actionable guide

Alex Liu

There's a reason why Apache Spark has become one of the most popular tools in Machine Learning – its ability to handle huge datasets at an impressive speed means you can be much more responsive to the data at your disposal. This book shows you Spark at its very best, demonstrating how to connect it with R and unlock maximum value not only from the tool but also from your data.Packed with a range of project blueprints that demonstrate some of the most interesting challenges that Spark can help you tackle, you'll find out how to use Spark notebooks and access, clean, and join different datasets before putting your knowledge into practice with some real-world projects, in which you will see how Spark Machine Learning can help you with everything from fraud detection to analyzing customer attrition. You'll also find out how to build a recommendation engine using Spark's parallel computing powers.

44
Ebook

Apache Spark Quick Start Guide. Quickly learn the art of writing efficient big data applications with Apache Spark

Shrey Mehrotra, Akash Grade

Apache Spark is a ?exible framework that allows processing of batch and real-time data. Its unified engine has made it quite popular for big data use cases. This book will help you to get started with Apache Spark 2.0 and write big data applications for a variety of use cases.It will also introduce you to Apache Spark – one of the most popular Big Data processing frameworks. Although this book is intended to help you get started with Apache Spark, but it also focuses on explaining the core concepts. This practical guide provides a quick start to the Spark 2.0 architecture and its components. It teaches you how to set up Spark on your local machine. As we move ahead, you will be introduced to resilient distributed datasets (RDDs) and DataFrame APIs, and their corresponding transformations and actions. Then, we move on to the life cycle of a Spark application and learn about the techniques used to debug slow-running applications. You will also go through Spark’s built-in modules for SQL, streaming, machine learning, and graph analysis.Finally, the book will lay out the best practices and optimization techniques that are key for writing efficient Spark applications. By the end of this book, you will have a sound fundamental understanding of the Apache Spark framework and you will be able to write and optimize Spark applications.

45
Ebook

Applying and Extending Oracle Spatial. This guide takes you straight into the attributes of Oracle Spatial and teaches you to extend, apply, and combine them with other Oracle and open source technologies. A vital manual for solving everyday problems

Siva Ravada, Simon Greener

Spatial applications should be developed in the same way that users develop other database applications: by starting with an integrated data model in which the SDO_GEOMETRY objects are just another attribute describing entities and by using as many of the database features as possible for managing the data. If a task can be done using a database feature like replication, then it should be done using the standard replication technology instead of inventing a new procedure for replicating spatial data. Sometimes solving a business problem using a PL/SQL function can be more powerful, accessible, and easier to use than trying to use external software. Because Oracle Spatial's offerings are standards compliant, this book shows you how Oracle Spatial technology can be used to build cross-vendor database solutions. Applying and Extending Oracle Spatial shows you the clever things that can be done not just with Oracle Spatial on its own, but in combination with other database technologies. This is a great resource book that will convince you to purchase other Oracle technology books on non-spatial specialist technologies because you will finally see that spatial is not special: it is a small, fun, and clever part of a much larger whole.

46
Ebook

Archiwizacja i odzyskiwanie danych

W. Curtis Preston

Optymalizacja procesu archiwizacji dla administratorów i nie tylko Jak archiwizować i odtwarzać system oraz dane? Jak wybrać optymalną metodę archiwizacji? Jak ograniczyć koszty związane z procesem archiwizacji? Wdrożenie systemu archiwizacji jest podstawową czynnością, jaką administrator powinien wykonać. Cel tej procedury jest oczywisty, tak jak cena, jaką przyjdzie zapłacić za brak takiego systemu. Utrata danych lub krach systemu wcale nie muszą oznaczać dla firmy długiego postoju i narażać jej na wielkie straty; wtedy to właśnie wysiłek, jaki włożył administrator w system archiwizacji, jest doceniany przez pracodawców i współpracowników. Jakie urządzenia i narzędzia należy zastosować, aby ten proces był sprawny i szybki, a jednocześnie zmieścił się w wyznaczonym do tego celu budżecie? Opisane oprogramowanie i rady udzielone przez autora tej książki pomogą Ci dokonać właściwego wyboru. "Archiwizacja i odzyskiwanie danych" to przewodnik po darmowych narzędziach do archiwizacji i odzyskiwania danych, przeznaczony głównie dla administratorów. W. Curtis Preston, specjalista w dziedzinie ochrony danych, zwrócił uwagę, że środki przeznaczone na system archiwizacji są często zbyt małe, by zapewnić mu wysoką skuteczność. Przyglądając się bliżej bezpłatnym narzędziom, odkrył ich duże możliwości; swoje spostrzeżenia i uwagi na ich temat zapisał w tej książce. Prędzej czy później każdy administrator staje przed koniecznością odbudowania systemu lub odzyskania danych i właśnie lektura tej książki sprawi, że będzie na to przygotowany! Narzędzia do archiwizacji i odtwarzania danych Przegląd programów komercyjnych i darmowych Urządzenia archiwizujące Przywracanie komputera od podstaw z wybranym systemem operacyjnym Archiwizacja i odtwarzanie baz danych Sposoby zabezpieczania archiwum i magazynów danych Wykorzystanie wirtualnych maszyn w procesie archiwizacji Poszerz swoją wiedzę i archiwizuj dane we właściwy, a także sprawdzony sposób!

47
Ebook

Artificial Intelligence Basics. A Self-Teaching Introduction

Mercury Learning and Information, N. Gupta, R. Mangla

This book is designed as a self-teaching introduction to the fundamental concepts of artificial intelligence (AI). It begins with the history of AI, the Turing test, and early applications, providing a strong foundation. Later chapters cover the basics of searching, game playing, and knowledge representation. The journey continues with detailed explorations of expert systems and machine learning, equipping readers with essential AI techniques.As the course progresses, you will delve into separate programming chapters on Prolog and Python, learning how to implement AI concepts in these languages. These chapters offer practical coding experience, enhancing your understanding of AI programming. The book culminates with a comprehensive chapter on AI machines and robotics, showcasing numerous modern applications and providing a glimpse into the future of AI technology.Understanding these AI concepts is crucial as they form the basis of many modern technologies and applications. This book ensures a smooth transition from a beginner to a proficient AI practitioner, equipped with both theoretical knowledge and practical skills. By the end of the book, you will have a thorough understanding of AI's history, core principles, and practical implementations, ready to apply this knowledge to real-world problems and projects.

48
Ebook

Artificial Intelligence with Power BI. Take your data analytics skills to the next level by leveraging the AI capabilities in Power BI

Mary-Jo Diepeveen

The artificial intelligence (AI) capabilities in Power BI enable organizations to quickly and easily gain more intelligent insights from unstructured and structured data.This book will teach you how to make use of the many AI features available today in Power BI to quickly and easily enrich your data and gain better insights into patterns that can be found in your data.You’ll begin by understanding the benefits of AI and how it can be used in Power BI. Next, you’ll focus on exploring and preparing your data for building AI projects and then progress to using prominent AI features already available in Power BI, such as forecasting, anomaly detection, and Q&A. Later chapters will show you how to apply text analytics and computer vision within Power BI reports. This will help you create your own Q&A functionality in Power BI, which allows you to ask FAQs from another knowledge base and then integrate it with PowerApps. Toward the concluding chapters, you’ll be able to create and deploy AutoML models trained in Azure ML and consume them in Power Query Editor. After your models have been trained, you’ll work through principles such as privacy, fairness, and transparency to use AI responsibly.By the end of this book, you’ll have learned when and how to enrich your data with AI using the out-of-the-box AI capabilities in Power BI.