Data Science

1
Відеокурс

Analiza danych w Pythonie. Kurs video. Pracuj z Jupyter, Pandas i Matplotlib

Przemysław Dacko

Obierz kurs na analizę danych w Pythonie! Według raportu Digital 2022 liczba internautów to ponad 62% światowej populacji. Są nas miliardy i w krótkim czasie produkujemy miliardy danych. We współczesnym świecie zbiory danych postrzegane są niemal jak złoto, determinują bowiem kierunek rozwoju gospodarki. Jednakże tylko odpowiednio przetworzone dane stają się wartościowymi informacjami. Możemy przyjąć, że kształtują one każdy biznes, dlatego biznes chętnie sięga po analizę danych - naukę, w której surowe dane są analizowane w celu uzyskania na ich podstawie użytecznych informacji i wniosków. A więc jak przekuć zebrane dane w złoto? Branżowym standardem w analizie danych jest język Python i dystrybucja Anaconda wraz z licznymi pakietami data science. Zarezerwuj ponad 6 godzin na naukę, a wszystkie te niezbędne narzędzia i metodyki analizowania danych poznasz w ramach naszego kursu. W trakcie naszego profesjonalnego szkolenia wideo z analizy danych w Pythonie nauczysz się: Korzystać z dystrybucji Anaconda Używać programów Jupyter Lab i Jupyter Notebook Tworzyć wirtualne środowiska dla języka Python i nimi zarządzać Korzystać na poziomie podstawowym z języka Python Używać na poziomie podstawowym biblioteki Pandas, w tym: Obsługiwać DataFrame'y i sety Operować na DataFrame'ach i setach Wczytywać pliki Excel, CSV, tekstowe, pickle Wczytywać dane z baz danych i poprzez API Stosować metody oczyszczania danych: Usuwać puste wiersze Podglądać i przeglądać dane Zarządzać duplikatami Radzić sobie z błędnym typem danych Formatować tabele i dane Usuwać konkretne znaki Korzystać z metod manipulacji danymi: Zmieniać nazwy i dzielić kolumny Agregować dane i znajdować średnie, sumy, mediany, minimum i maksimum Grupować dane - sprawdzać teorię i analizować konkretne tendencje Sortować dane Filtrować dane Łączyć kilka źródeł i tabel w jedną Używać biblioteki Matplotlib i tworzyć wykresy: Tworzyć podstawowy wykres liniowy Edytować markery i linie Edytować etykiety i siatki Tworzyć subwykresy Tworzyć wykres scatterplot Tworzyć wykres słupkowy Generować histogram Tworzyć wykres kołowy Analizować dane i wyciągać wnioski z uzyskanych informacji Analiza danych w Pythonie. Kurs video. Pracuj z Jupyter, Pandas i Matplotlib rozpoczyna się konfiguracją środowiska Anaconda i instalacją bibliotek. W drugim rozdziale przestaną Ci być obce podstawy języka Python, poznasz między innymi operatory, listy, tuple, sety, słowniki, instrukcje warunkowe, pętle, funkcję lambda, RegEx i wyjątki. Po zaprzyjaźnieniu z Pythonem przyjdzie kolej na Pandas - bibliotekę oferującą struktury danych i operacje do manipulowania tabelami liczbowymi, a także szeregami czasowymi. Następnie czeka Cię dużo pracy z danymi; nauczysz się je oczyszczać, agregować i grupować. Po odpowiednim przygotowaniu danych kolej na ich wizualizację. W ostatnim rozdziale poznasz bibliotekę Matplotlib do generowania wizualizacji danych takich jak wykresy i histogramy. Kurs z analizy danych w Pythonie zakończysz na poziomie podstawowym. Będziesz w stanie samodzielnie stworzyć projekt analizy i przeprowadzić ją od wczytania danych po wnioski i wyniki w postaci tabel i wykresów. Pozbędziesz się uczucia skołowania, wywołanego wątpliwościami, od czego by rozpocząć naukę, a poznane zagadnienia pozwolą Ci na efektywny dalszy rozwój, wskażą bowiem wiele punktów wyjścia do kreowania swojej ścieżki w data science. Jakie zadania wykonuje analityk danych? Do codziennych zadań analityka należy zwiększanie wydajności poprzez wykrywanie wzorców w danych. Pod tym pojęciem kryje się realizowana na różne sposoby praca z danymi, w tym ich eksploracja, zarządzanie nimi, a także analiza statystyczna i wizualizacja danych. Analityk zajmuje się weryfikacją pewnych hipotez biznesowych i przygotowaniem raportów dla zarządu lub innych pracowników firmy. Jednocześnie zachowuje dużą samodzielność, eksplorując dane w sposób kreatywny i poszukując ciekawych zależności i zachowań. Już teraz jest to jeden z lepiej opłacanych zawodów w branży informatycznej, a analityk danych jest pożądanym pracownikiem z pogranicza IT i biznesu w każdej, zarówno większej, jak i mniejszej firmie. Zobacz także kursy wideo z .NET

2
Відеокурс

Analiza danych w środowisku R. Kurs video. Poziom pierwszy. Manipulacja, modelowanie i wizualizacja danych w praktyce

Alicja Wolny-Dominiak

Obierz kurs na sprawniejszą analizę danych W dobie rozwoju technologii informatycznych i bazodanowych firmy gromadzą coraz więcej danych związanych z różnymi obszarami funkcjonowania przedsiębiorstwa. Praca z danymi powoli staje się codziennością działów marketingu i sprzedaży, w których konieczna okazuje się umiejętność szybkiego analizowania masowych informacji dotyczących profilu i zachowań klientów, źródeł ruchu na stronach WWW czy produktów przynoszących największe przychody w danym kanale dystrybucji. Kto potrafi błyskawicznie przetworzyć te dane i wyciągnąć z nich trafne wnioski, ten zyskuje przewagę konkurencyjną. Nic dziwnego, że rynek pracy jak gąbka chłonie specjalistów w zakresie analizy oraz wizualizacji danych. Sprzymierzeńcem w tych działaniach jest program R, czyli środowisko do obliczeń statystycznych, oraz współpracujące z nim R-Studio, stanowiące zestaw narzędzi do odzyskiwania danych utraconych z wewnętrznych i zewnętrznych nośników. Umiejętność sprawnego posługiwania się tym oprogramowaniem pozwala w bardzo elastyczny i indywidualny sposób przeprowadzać niezwykle zaawansowane analizy oraz profesjonalne wizualizacje danych. Co istotne, praca z nimi nie wymaga posiadania dużej wiedzy z dziedziny programowania — skupia się przede wszystkim na problemach stricte związanych z analizą. Niniejszy kurs video pozwala na szybkie rozpoczęcie samodzielnego działania w R-Studio i pokazuje możliwości, jakie oferuje środowisko R. Co Cię czeka podczas naszego profesjonalnego szkolenia? W trakcie niniejszego kursu video: Zobaczysz, na czym polega obróbka danych i jak zautomatyzować ten proces. Przeprowadzisz obliczenia statystyczne na zbiorach danych, a następnie je zautomatyzujesz. Zapoznasz się z zagadnieniem modelowania statystycznego. Będziesz wizualizować dane, wyniki oraz uzyskasz wykresy statystyczne. Co więcej... Nauczysz się wykonywać aplikację webową dla powyższych czynności. Analiza danych w środowisku R. Kurs video. Poziom pierwszy. Manipulacja, modelowanie i wizualizacja danych w praktyce kończy się na poziomie podstawowym. Jego słuchacz zdobędzie bazową wiedzę z obszaru statystyki opisowej oraz pracy w środowisku R i narzędziu R-Studio, dzięki czemu będzie w stanie samodzielnie ją rozwijać. Witaj w programie R Program, środowisko albo — jeszcze inaczej — język R to oprogramowanie typu open source, co oznacza, że rozwijają go sami użytkownicy, a korzystanie z niego jest nieodpłatne. Współpracuje z komputerami zarówno z Linuksem, jak i z Windowsem oraz macOS. Dostarcza szeroką gamę technik statystycznych (takich jak modelowanie liniowe i nieliniowe, klasyczne testy statystyczne, analiza szeregów czasowych, klasyfikacja czy grupowanie) oraz graficznych. Powszechnie korzysta się z niego w biznesie, bioinformatyce czy medycynie — do badań klinicznych. Jest na tyle popularny, że producenci komercyjnych pakietów statystycznych (na przykład SAAS lub Statistica) oferują dedykowane mechanizmy, dzięki którym ich oprogramowanie współpracuje z R. Dowiedz się, czym jest i jak działa pakiet R Kurs, dzięki któremu opanujesz podstawy pracy z językiem R oraz narzędziem R-Studio, trwa cztery godziny. W tym czasie dowiesz się, czym jest środowisko R i R-Studio i jak je zainstalować na swoim komputerze. Poznasz składnię programu R: rodzaje obiektów, wymuszanie typu zmiennej, wektor, macierz, listę faktor, ramkę danych data.frame, działania wektorowe, if oraz pętlę. Będziesz manipulować danymi — wczytywać je, agregować, filtrować, sortować i łączyć. Wykonasz analizę danych — i poznasz przy tym kolejne pojęcia: zmienną losową, jej rozkład i wybrane rozkłady, korelację i regresję oraz analizę szeregu czasowego (dekompozycja, średnia ruchoma, prognozowanie). Zobaczysz podstawowe wykresy wykonywane w technice tradycyjnej, dowiesz się, na czym polega formatowanie i personalizacja wykresu, poznasz nowoczesne wykresy z pakietem ggplot2, htmlwidgets i mapy z ggplot. Zaznajomisz się również z budową webowej aplikacji R Shiny. Tylko dla wtajemniczonych Osoba korzystająca z programu R może zajmować się wszystkim, co dotyczy danych i ich obróbki, analiz statystycznych czy wizualizacji. Poszerzając samodzielnie zakres wiedzy, będzie potrafiła budować modele statystyczne bazujące na zmiennych losowych i ich rozkładach, wykonywać na własne potrzeby różnego rodzaju symulacje, tworzyć modele predykcyjne i inne eksperymenty w ramach uczenia maszynowego oraz automatyzować wymienione czynności.

3
Відеокурс

Analiza danych w Tableau. Kurs video. Podstawy pracy analityka

Przemysław Dacko

Obierz kurs na analizę danych w Tableau W sektorze business intelligence Tableau ma aż 16 procent udziału w rynku, co czyni go liderem w kategorii oprogramowania do analizy danych. Na ten zdumiewający wynik z pewnością wpłynęła prosta obsługa programu i jego intuicyjny interfejs. Nietechniczni pracownicy firmy bez problemów mogą przeglądać i analizować gotowe dane i raporty. Tableau, prócz tego, że jest łatwy do nauki, jako narzędzie do wizualizacji danych oferuje ogromne możliwości. Cechuje się dużą wydajnością, zdolnością wykonywania złożonych obliczeń i przetwarzania milionów danych w czasie rzeczywistym. Jest programem, w którym skomplikowane tabele w okamgnieniu można zamienić w zrozumiałe, interaktywne wykresy i grafiki. Ponadto Tableau jest dostępny na urządzenia mobilne iOS i Android. Wszystkie swoje analizy i raporty możesz więc mieć zawsze ze sobą! Użytkownicy pokochali Tableau za innowacje, które wprowadza do świata business intelligence. Z naszym kursem przekonasz się, że to narzędzie skrojone pod oczekiwania analityka! Analiza danych w Tableau. Kurs video. Podstawy pracy analityka składa się z 74 lekcji trwających łącznie ponad 7 godzin. W trakcie naszego profesjonalnego szkolenia: Zainstalujesz Tableau i poznasz jego obsługę Samodzielnie stworzysz wykresy: liniowe, punktowe, słupkowe, kołowe, pociskowe, heatmap, treemap Nauczysz się formatować wykresy, dodawać linie trendów i forecasty Poznasz najważniejsze pojęcia: worksheet, workbook, dashboard, story Nauczysz się pisać funkcje LOD Poznasz składnię pól kalkulowanych i dowiesz się, jak je utworzyć Stworzysz zaawansowane pola kalkulowane Przećwiczysz kalkulacje tabelaryczne, a także zorientujesz się, jak i kiedy ich używać Dowiesz się, jak korzystać z Tableau Server i Tableau Online Poznasz funkcje dostępne dla osoby wyświetlającej raport Nauczysz się tworzyć profesjonalne dashboardy i używać wszystkich związanych z nimi funkcji Dowiesz się, jak tworzyć foldery i przyznawać uprawnienia dostępu do nich Poznasz miary i wymiary Przećwiczysz pracę z danymi liczbowymi, tekstowymi i datami Przygotujesz źródło danych typu live i extract Uformujesz wszelkiego rodzaju relacje między źródłami danych Poznasz parametry, sety i ich zastosowanie Co więcej... Nauczysz się porządkowania danych, w tym agregowania, grupowania, filtrowania i sortowania Opublikujesz swoją pracę i własne źródło danych Analiza danych w Tableau. Kurs video. Podstawy pracy analityka ugruntuje Twoją wiedzę na poziomie podstawowym. Nie musisz mieć żadnych umiejętności technicznych i programistycznych, by nauczyć się obsługi Tableau. W trakcie szkolenia zaznajomisz się z pracą na zbiorach danych i metodami wizualizowania ich w postaci wykresów. Poznasz możliwości podłączania źródeł i relacje między danymi. Dowiesz się, jak łączyć tabele za pomocą join i union. Nauczysz się blendowania – techniki łączenia danych z różnych źródeł, aby analizować je w obrębie jednego widoku. Przećwiczysz funkcje LOD, czyli kalkulacje poziomu szczegółowości, i przedstawisz dane na innym poziomie dokładności niż wejściowa wizualizacja. Za pomocą kilku kliknięć stworzysz interaktywny dashboard umożliwiający wizualne porównywanie różnych typów danych. W ostatnim rozdziale opublikujesz kompletny raport na serwerze, by był dostępny dla uprawnionych odbiorców.

4
Відеокурс

Apache NiFi. Kurs video. Automatyzacja przepływu danych i narzędzia Big Data

Piotr Szymański

Obierz kurs na... sprawną pracę z danymi w świecie Big Data Rola danych stale rośnie. Dziś są one nowym złotem, najcenniejszym zasobem, zdolność do ich kolekcjonowania, przetwarzania i eksplorowania zgodnie z zapotrzebowaniem zaś cenną umiejętnością. Tym cenniejszą, że dostęp do nich stanowi warunek rozwoju sztucznej inteligencji, czyli najgorętszej dziś dziedziny IT. Wszak modele SI są trenowane dzięki karmieniu systemu ogromnymi wolumenami danych. Nie byłoby to możliwe bez zastosowania odpowiednich, przeznaczonych do pracy z danymi narzędzi. Jednym z najciekawszych jest Apache NiFi – opracowane przez Apache Software Foundation, przeznaczone do automatyzacji przepływu danych między systemami oprogramowania. Oferuje ono o wiele więcej niż tradycyjne systemy ETL (ang. extract, transform and load). Myślisz o pobieraniu danych z różnych źródeł i chcesz to robić w prosty sposób – korzystając z metody „przeciągnij i upuść”? Chcesz wyzwalać procesy według harmonogramu? Zamierzasz wykrywać nowe dane oprogramowaniem typu open source, bez kosztownych licencji? W takim razie ten kurs, poświęcony Apache NiFi, jest dla Ciebie. Oprogramowanie, o którym mowa, pozwoli Ci pobierać pliki o różnych formatach (jak CSV, JSON, XML, AVRO, ORC) z rozmaitych magazynów danych (na przykład HDFS, Amazon S3, Google Cloud Storage) w bardzo prosty sposób. Wystarczy, że przeciągniesz odpowiednie komponenty, a połączenie różnych systemów i przesyłanie danych między nimi z wykorzystaniem przykładowo baz danych, takich jak PostgreSQL, Oracle, SQL Server, MongoDB, Apache Cassandra czy nawet serwisy sieciowe i strumienie danych typu MQTT, JMS, Kafka, stanie się dziecinnie proste. Podobnie jak pobieranie i dystrybucja e-maili według treści. A to dopiero początek możliwości Apache NiFi. Chcesz poznać je wszystkie? Zapraszamy do wzięcia udziału w naszym kursie! Co Cię czeka podczas naszego profesjonalnego szkolenia W ramach kursu między innymi: Dowiesz się, jak zainstalować i skonfigurować Apache NiFi Nauczysz się używać tego narzędzia do pobierania i przetwarzania danych z różnych źródeł Będziesz analizować, testować i debugować procesy NiFi, a także tworzyć połączenia między poszczególnymi grupami procesów Poznasz sposób konfiguracji Apache NiFi Registry Zmonitorujesz wytworzone procesy i środowisko Przygotujesz prostą obsługę błędów procesów Stworzysz procesy wykorzystujące przetwarzanie warunkowe Apache NiFi. Kurs video. Automatyzacja przepływu danych i narzędzia Big Data jest przeznaczony dla początkujących słuchaczy. Po ukończeniu szkolenia będziesz w stanie samodzielnie pracować z Apache NiFi i dalej rozwijać zdobyte w trakcie nauki umiejętności. Apache NiFi Oprogramowanie to zostało stworzone przez National Security Agency (NSA) w USA i pierwotnie nazywało się NiagaraFiles. Projekt został przekazany do Apache Software Foundation w 2014 roku. Jeśli chodzi o graficzny software użytkownika, Apache NiFi jest jednym z nielicznych narzędzi, które służą do budowy przepływu danych i przy tym oferują pełne wizualne środowisko, a budowę przypływu pozwalają zrealizować za pomocą metody „przeciągnij i upuść”, z konfiguracją jedynie parametrów gotowych procesorów, takich jak adres bazy danych czy adres URL serwisu. Ułatwia to użytkownikom tworzenie złożonych przepływów danych i zarządzanie tym procesem. Bogaty ekosystem Apache NiFi ma w obecnej chwili 345 gotowych do użycia wbudowanych procesorów, które umożliwiają połączenie z niemal wszystkimi popularnymi systemami. Sama lista procesorów jest sukcesywnie rozwijana – wraz z nowymi wersjami, wydawanymi zwykle co kilka miesięcy.

5
Відеокурс

Apache Spark. Kurs video. Przetwarzanie złożonych zbiorów danych

Marek Czuma

Obierz kurs na złożone zbiory danych Apache Spark to narzędzie do przetwarzania danych w trybie rozproszonym, które umożliwia budowanie zaawansowanych systemów operacji na złożonych zbiorach danych. Przetwarzanie rozproszone poprzez wykorzystanie wielu maszyn jednocześnie znacząco przyspiesza operacje na dużych ilościach danych. Spark jest niezwykle popularny, stosowany w licznych projektach, a jego rynkowy udział stale rośnie. Można go używać zarówno na platformach chmurowych, jak i on-premise. W czasach, gdy Apache Spark debiutował, dominowała technologia MapReduce, która szybko została zastąpiona przez Sparka z powodu jego wielokrotnie lepszej wydajności. Dzięki przetwarzaniu danych w pamięci może on być nawet 100 razy szybszy! Do dużych firm korzystających z tego narzędzia należą: eBay, który używa go do targetowanych ofert, i Netflix, przetwarzający w trybie strumieniowym ponad 450 miliardów zdarzeń dziennie. Spark jest narzędziem niezastąpionym w świecie big data – obsługuje różne rodzaje przetwarzania danych, w tym przetwarzanie wsadowe, strumieniowe, interaktywne zapytania i uczenie maszynowe. Oferuje API dla języków takich jak Python, Scala, Java i R. Dodatkowo ma bogaty ekosystem narzędzi i bibliotek, między innymi Spark SQL, rozszerzających jego funkcjonalność i umożliwiających szerokie zastosowanie w różnorodnych projektach. To wszechstronne narzędzie rewolucjonizuje sposób, w jaki przetwarzamy i analizujemy dane w dzisiejszym świecie. Zdobądź praktyczne umiejętności i dowiedz się, jak korzystać z Apache Spark w branży big data. W trakcie kursu: Nauczysz się podstawowej obsługi Apache Spark Dowiesz się, jak działa architektura Sparka Zrozumiesz, jak zbudować logiczną strukturę joba (aplikacji) sparkowego Poznasz struktury danych obecne w Sparku Odkryjesz wiele funkcji przydatnych przy operacjach na danych Nauczysz się budować własne funkcje do operacji na danych (UDF) Dowiesz się, jak łączyć zbiory danych Opanujesz oczyszczanie surowych danych przy użyciu Sparka Nauczysz się pracy na rzeczywistych zbiorach danych W trakcie szkolenia Apache Spark. Kurs video. Przetwarzanie złożonych zbiorów danych nauczysz się budowy Apache Spark, poznając jego architekturę i zasady działania na wielu maszynach. Zdobędziesz ogólne rozeznanie w strukturach Apache Spark, a także zrozumiesz, jak działają akcje i transformacje. Będziesz pracować ze strukturami danych, jak RDD i dataframe – łączyć je za pomocą Unions i Joins, wykonywać agregacje i korzystać z pakietu functions. Odkryjesz, jak pracować z plikami w Sparku, a także przeprowadzisz praktyczne ćwiczenia na danych z Netflixa i pizzerii w USA. Dowiesz się, jak tworzyć własną logikę w Sparku, w tym jak definiować i stosować funkcje UDF i transform. Na koniec opanujesz dobre praktyki wydajnościowe i zrealizujesz mikroprojekt, obejmujący przegląd i czyszczenie danych, budowę wyszukiwarki i generatora statystyk. Kurs ukończysz na poziomie podstawowym. Zdobyte umiejętności pozwolą Ci pewnie poruszać się w środowisku Sparka, jak również – z pomocą doświadczonego zespołu – wziąć udział w pierwszym komercyjnym projekcie Sparkowym. Oddaję w Twoje ręce kurs, który jest syntezą wielu lat mojej pracy z Apache Spark. Choć uwielbiam tę technologię, popełniłem przy niej więcej błędów, niż jest to przyzwoite. Tym kursem oszczędzę Ci znakomitej większości z nich! Mam głęboką nadzieję, że poza solidną zawartością merytoryczną, będziesz się po prostu świetnie bawić. Wierzę, że nie tylko dasz radę przejść go wzorowo, ale też że uruchomisz ogromne pokłady swojej kreatywności. Twoje możliwości są znacznie wyżej, niż sądzisz! Wierzę w Ciebie, więc laptop na biurko, kawa w dłoń i lecimy eksplorować fascynujący świat danych!

6
Відеокурс

Dashboardy w Excelu. Kurs video. Od surowych danych do perfekcyjnych raportów

Krzesimir Skórka

Obierz kurs na... perfekcyjne dashboardy w Excelu Analityka danych to umiejętność biznesowa, której fundamentem jest Excel. Dzięki biegłej znajomości tego narzędzia nie tylko usprawnisz raportowanie i automatyzację monotonnych zadań, ale także swobodnie przejdziesz do nauki bardziej zaawansowanych narzędzi analitycznych, takich jak Power BI czy SQL. Wiele osób korzysta z Excela na co dzień, ale nie zdaje sobie sprawy, jaki potencjał w nim drzemie. To nie jest tylko arkusz kalkulacyjny – to potężny mechanizm, który pozwala na tworzenie dynamicznych dashboardów, ułatwiających analizę kluczowych wskaźników sprzedażowych, finansowych i kadrowych. Tworzenie takich dashboardów nie wymaga skomplikowanej wiedzy programistycznej, a efekty, jakie osiągniesz, mogą być naprawdę imponujące. Z naszym szkoleniem odkryjesz ukryte funkcje Excela – od tabel przestawnych, przez fragmentatory, po dynamiczne wykresy i inteligentne formuły, za sprawą których będziesz wizualizować dane w sposób czytelny i atrakcyjny. Automatyzacja procesów za pomocą Excela pozwoli Ci zaoszczędzić godziny pracy, wyeliminuje bowiem powtarzalne zadania i poprawi organizację danych. Bez względu na to, czy pracujesz w księgowości, dziale HR, czy zajmujesz się zarządzaniem projektami, umiejętność przejrzystego prezentowania danych znacząco wpłynie na Twoje decyzje biznesowe. Pracodawcy poszukują specjalistów, którzy potrafią analizować liczby i prezentować je w czytelnej formie. Wyróżnij się na rynku i zdobądź wymarzony awans! Twórz dashboardy jak prawdziwy profesjonalista, zamieniając surowe dane w przejrzyste i dynamiczne wizualizacje. W trakcie szkolenia Dashboardy w Excelu. Kurs video. Od surowych danych do perfekcyjnych raportów nauczysz się budować dynamiczne raporty sprzedażowe, kadrowe, księgowe i zarządcze, które ułatwią analizę danych i przyczynią się do podejmowania trafnych decyzji biznesowych. To idealny wybór dla Ciebie, jeśli masz średnio zaawansowaną lub zaawansowaną wiedzę z zakresu Excela i chcesz poszerzyć umiejętności w ramach pracy z tym narzędziem. Odkryjesz nowe możliwości prezentowania i analizy danych, dzięki czemu podniesiesz swoje kompetencje zawodowe. Opanujesz tabele przestawne, fragmentatory, oś czasu i wykresy przestawne, a Twoje raporty staną się czytelne i interaktywne. Poznasz zaawansowane techniki wizualizacji danych, takie jak kartogramy, wykresy pierścieniowe i liniowe, co pozwoli Ci skutecznie prezentować wyniki. Dowiesz się, jak automatyzować raportowanie i oszczędzać godziny pracy dzięki inteligentnym formułom Excela. Zdobędziesz umiejętności cenione w każdej branży – od finansów i księgowości po HR, marketing i zarządzanie projektami. Po ukończeniu szkolenia będziesz w stanie tworzyć pełne dashboardy zarządcze, w tym kokpity i kartogramy, które ułatwią podejmowanie decyzji biznesowych na podstawie analizy danych. Twoja efektywność wzrośnie, a codzienne zadania staną się prostsze i szybsze do wykonania. Pracuj mądrzej, a nie ciężej – zyskaj czas dzięki zaawansowanym narzędziom Excel i zaskocz profesjonalizmem.

7
Відеокурс

Data mining. Kurs video. Eksploracja danych z językiem R

Alicja Wolny-Dominiak

Obierz kurs na... eksplorację danych Żyjemy w świecie informacji. Przewagę w nim ma ten, kto dysponuje pożądanymi informacjami i (równocześnie) potrafi z nich zrobić odpowiedni użytek. Ten pierwszy etap - pozyskiwanie danych - w erze cyfrowej jest związany z czerpaniem ich z baz danych i odkrywaniem prawidłowości kryjących się w tym, co wydobywa się z hurtowni danych. Tym właśnie jest data mining (inaczej: eksploracja danych). Wraz z rozwojem dużych baz danych proces ten zyskał szerokie zastosowanie w wielu dziedzinach życia, od nauki po biznes. Opierając się na eksplorowaniu i analizie danych, firma może choćby lepiej poznać zwyczaje i preferencje swoich klientów, a dzięki temu przygotować dla nich atrakcyjniejszą ofertę czy przyjaźniej się z nimi komunikować. Na rynku jest dostępnych wiele programów, które pozwalają na przeprowadzenie pełnego modelu procesu data mining. Istotnym etapem jest tu znajomość metod i algorytmów, z których można skorzystać przy rozwiązywaniu danego problemu. Ogólną wiedzę praktyczną w tym zakresie daje nauka modelowania z programem R. Zastosowanie danego algorytmu wymaga „świadomego” użytkownika, a nie jedynie użycia gotowego okna dialogowego i kliknięcia przycisku OK. Nasz kurs ma na celu przybliżenie zagadnień związanych z algorytmami dataminingowymi w praktycznym modelowaniu z zastosowaniem języka R. Zdobyte podczas szkolenia umiejętności można wykorzystać od razu w swojej pracy lub potraktować jako bazę lepszego zrozumienia specjalistycznego oprogramowania w obszarze data mining. Co Cię czeka podczas naszego profesjonalnego szkolenia W ramach proponowanego przez nas kursu między innymi: Dowiesz się, czym jest data mining i jak działa model procesu eksploracji danych CRISP-DM Przyjrzysz się procesom związanym z pracą z danymi: imputacji wartości NA w danych, skalowaniu/normalizacji danych Zrozumiesz, czym są statystyki opisowe, statystyki opisowe w grupach Zagłębisz się w problemy związane z klasyfikacją, prawdopodobieństwem i macierzą pomyłek Poznasz tematy związane z drzewem decyzyjnym Co więcej... Nauczysz się modelować dane za pomocą metody k-średnich i metody aglomeracyjnej Data mining. Kurs video. Eksploracja danych z językiem R kończy się na poziomie podstawowym. Pozwala zrozumieć ideę procesu data mining, przybliża także najpopularniejsze algorytmy obliczeniowe w klasyfikacji i clusteringu (analizie skupień). Jeśli chodzi o część praktyczną, celem szkolenia jest nauczyć Cię stosowania algorytmów z udziałem języka R. Co istotne, by w pełni skorzystać z kursu, musisz znać podstawy tego języka. W świecie, w którym informacja jest złotem... Zdobytą na kursie wiedzę warto od razu zastosować w praktyce. Będzie z pewnością przydatna dla osób pracujących albo starających się o pracę na stanowisku analityka danych, junior data scientist, analityka BI (business intelligence) itd. Szkolenie da słuchaczowi solidne podstawy do tego, aby bez problemu zgłębiać wiedzę i umiejętności w zakresie data mining z uwzględnieniem dowolnej właściwie dziedziny nauki i biznesu: od ekonomii, przez inżynierię, aż po medycynę. Znajomość przedstawionych w kursie zagadnień przyda się również studentom - szczególnie w ramach przedmiotów ilościowych, opartych na wyciąganiu wiedzy z danych.

8
Відеокурс

Data Science w Pythonie. Kurs video. Algorytmy uczenia maszynowego

Oleg Żero

Obierz kurs na... przyszłość Powszechna cyfryzacja nie dotyka jedynie wybranych gałęzi przemysłu, ale dosłownie przeniknęła nasze życie niemal w każdym aspekcie. Skutkiem tego procesu jest pojawienie się ogromnej ilości danych, które, odpowiednio wykorzystane, stanowią nowy rodzaj materii w nieprzerwanym cyklu postępu. Uczenie maszynowe stało się jednocześnie obszarem szczególnego zainteresowania ze strony zarówno firm, jak i uczelni. Dzięki specjalnym algorytmom i technikom możliwe stało się wykorzystanie zasobów, jakimi są dane, do opracowywania rozwiązań poprawiających efektywność w wielu dziedzinach: od robotyki, przez medycynę, aż po rozrywkę. Przykładami rozwiązań, które już dziś wykorzystują uczenie maszynowe, są chociażby silniki rekomendacyjne działające na platformach takich jak YouTube, Netflix, Spotify czy Amazon. Silniki te skutecznie dobierają treści, tak że wokół produktów tworzą się całe społeczności wiernie oddanych klientów. To wszystko dzieje się obecnie. W niedalekiej przyszłości wiele - także dość skomplikowanych - czynności zostanie zautomatyzowanych. Zawody, również te potencjalnie wymagające wysokich kwalifikacji, nawet jeśli nie będą w całości wykonywane przez maszyny, będą przez nie wspomagane. Jest niemal pewne, że specjaliści między innymi w dziedzinie uczenia maszynowego, którzy już dziś są intensywnie poszukiwani, staną się jeszcze bardziej pożądani w przyszłości. Dołącz do ich grona! Co Cię czeka podczas naszego profesjonalnego szkolenia? Dzięki temu kursowi video: pojmiesz istotę działania algorytmów uczenia maszynowego, zrozumiesz związek pomiędzy podstawą matematyczną a implementacją tych algorytmów i w razie czego będziesz umiał napisać je od zera (także w języku innym niż Python), dowiesz się, jak korzystać z popularnych i sprawdzonych bibliotek dedykowanych uczeniu maszynowemu: scikit-learn oraz Keras, stworzysz własny silnik rekomendacyjny, poprawnie przeprowadzisz proces przygotowania danych oraz trenowania modelu, ocenisz, który algorytm najlepiej sprawdzi się w rozwiązaniu danego problemu, a który może doprowadzić do niepożądanych efektów, opanujesz wiedzę, która pozwoli Ci szacować skuteczność modeli oraz diagnozować problemy związane z procesem uczenia maszynowego. Co więcej... ukończywszy kurs, będziesz w stanie właściwie podejść do pracy z różnymi typami danych w kontekście uczenia maszynowego, jak również przenieść sporą część tej wiedzy poza obszar Pythona. Data science w Pythonie. Kurs video. Algorytmy uczenia maszynowego kończy się na poziomie średnio zaawansowanym, a nawet nieco wyżej, jeśli chodzi o wiedzę i umiejętności, jakich wymaga się na przykład od analityka biznesowego, naukowca, inżyniera danych czy webdevelopera. Natomiast jeśli mowa o wiedzy stricte z zakresu data science, autor kursu określa poziom jego absolwenta na podstawowy. Uwaga, by móc w pełni skorzystać ze szkolenia, trzeba znać podstawy języka Python (w tym orientować się w bibliotekach: numpy, pandas, matplotlib) i matematykę na poziomie pierwszego - drugiego roku studiów na kierunkach ścisłych. Takie pojęcia jak gradient, pochodna, szereg, prawdopodobieństwo czy notacja nie powinny być Ci obce! Czym właściwie zajmuje się specjalista w dziedzinie data science? Odpowiedź na to pytanie jest krótka i - jak to w matematyce - policzalna. Aż 70 procent czasu pracy spędza się w tym zawodzie na zbieraniu i analizie danych, by potem, przez kolejne 20 procent, tworzyć i testować modele, które "ubiera się" w programy, a następnie wykorzystuje do otrzymywania przewidywań z modeli. Przykładami takich modeli, jakie stosuje się już dziś w kontekście biznesowym, są między innymi silniki rekomendacyjne (Netflix, YouTube, eBay, Amazon, Spotify itd.), modele do klasyfikacji obrazów medycznych w celu rozpoznawania ewentualnych infekcji, systemy do automatycznych tłumaczeń (patrz Google) czy popularne boty - i wiele innych. Od teorii, przez praktykę, aż po gotowe rozwiązania Kurs składa się z trzech bloków szkoleniowych. Zaczniemy od teorii data science. Tu przygotuj się na serię wykładów, w których autor wprowadza pojęcia na poziomie równań, wyjaśniając je od podstaw. Bazując na wiedzy zdobytej w części teoretycznej, przejdziemy do praktyki - będziesz pisać algorytm "od zera", a przy tym pogłębisz rozumienie koncepcji matematycznych i przy okazji napiszesz kod. Wreszcie przyjdzie czas na część trzecią, podczas której będziemy sprytni i sięgniemy po tzw. gotowce - przede wszystkim scikit-learn i Keras. Przy użyciu tych bibliotek rozwiążemy zadany problem, skupiając się zarówno na samym zagadnieniu, jak i ogólnym podejściu do problemu. W kursie połączysz teorię z praktyką. Dzięki temu osiągniesz dwa cele: wyrobisz w sobie intuicję matematyczną, która w razie potrzeby pozwoli Ci przenieść to rozumienie również poza Pythona, oraz zyskasz pewne doświadczenie w wykorzystywaniu powszechnie dostępnych narzędzi i w ten sposób zwiększysz skuteczność swojej pracy. Kurs jest podzielony na 16 rozdziałów. W pierwszym rozdziale stworzysz proste środowisko pracy. Dalej, w rozdziałach 2 - 8, poznasz podstawowe algorytmy, takie jak sieci neuronowe, oraz zrozumiesz, na czym polega ogólne podejście machinelearningowe. W rozdziałach 9 - 13 poznasz kolejne, nieco alternatywne, lecz równie często wykorzystywane algorytmy, których idea opiera się na innych zasadach. Na koniec, w ramach rozdziałów: 14, 15 i 16, stworzysz własny silnik rekomendacyjny, który następnie usprawnisz z wykorzystaniem popularnych metod pracy z tekstem (NLP), by uzyskać półgotowy produkt na koniec kursu.