Категорії
Електронні книги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комп'ютер в офісі
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Мультимедійне навчання
- Нерухомість
- Переконання та НЛП
- Податки
- Соціальна політика
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Звіти, аналізи
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Електронна преса
- Architektura i wnętrza
- Biznes i Ekonomia
- Будинок та сад
- Електронний бізнес
- Фінанси
- Особисті фінанси
- Бізнес
- Фотографія
- Інформатика
- Відділ кадрів та оплата праці
- Комп'ютери, Excel
- Бухгалтерія
- Культура та література
- Наукові та академічні
- Охорона навколишнього середовища
- Впливові
- Освіта
- Податки
- Подорожі
- Психологія
- Релігія
- Сільське господарство
- Ринок книг і преси
- Транспорт та спедиція
- Здоров'я та краса
-
Історія
-
Інформатика
- Офісні застосунки
- Бази даних
- Біоінформатика
- Бізнес ІТ
- CAD/CAM
- Digital Lifestyle
- DTP
- Електроніка
- Цифрова фотографія
- Комп'ютерна графіка
- Ігри
- Хакування
- Hardware
- IT w ekonomii
- Наукові пакети
- Шкільні підручники
- Основи комп'ютера
- Програмування
- Мобільне програмування
- Інтернет-сервери
- Комп'ютерні мережі
- Стартап
- Операційні системи
- Штучний інтелект
- Технологія для дітей
- Вебмайстерність
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Оповідна поезія
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Шкільні підручники
-
Науково-популярна та академічна
- Археологія
- Bibliotekoznawstwo
- Кінознавство / Теорія кіно
- Філологія
- Польська філологія
- Філософія
- Finanse i bankowość
- Географія
- Економіка
- Торгівля. Світова економіка
- Історія та археологія
- Історія мистецтва і архітектури
- Культурологія
- Мовознавство
- літературні студії
- Логістика
- Математика
- Ліки
- Гуманітарні науки
- Педагогіка
- Навчальні засоби
- Науково-популярна
- Інше
- Психологія
- Соціологія
- Театральні студії
- Богослов’я
- Економічні теорії та науки
- Transport i spedycja
- Фізичне виховання
- Zarządzanie i marketing
-
Порадники
-
Ігрові посібники
-
Професійні та спеціальні порадники
-
Юридична
- Безпека життєдіяльності
- Історія
- Дорожній кодекс. Водійські права
- Юридичні науки
- Охорона здоров'я
- Загальне, компендіум
- Академічні підручники
- Інше
- Закон про будівництво і житло
- Цивільне право
- Фінансове право
- Господарське право
- Господарське та комерційне право
- Кримінальний закон
- Кримінальне право. Кримінальні злочини. Кримінологія
- Міжнародне право
- Міжнародне та іноземне право
- Закон про охорону здоров'я
- Закон про освіту
- Податкове право
- Трудове право та законодавство про соціальне забезпечення
- Громадське, конституційне та адміністративне право
- Кодекс про шлюб і сім'ю
- Аграрне право
- Соціальне право, трудове право
- Законодавство Євросоюзу
- Промисловість
- Сільське господарство та захист навколишнього середовища
- Словники та енциклопедії
- Державні закупівлі
- Управління
-
Путівники та подорожі
- Африка
- Альбоми
- Південна Америка
- Центральна та Північна Америка
- Австралія, Нова Зеландія, Океанія
- Австрія
- Азії
- Балкани
- Близький Схід
- Болгарія
- Китай
- Хорватія
- Чеська Республіка
- Данія
- Єгипет
- Естонія
- Європа
- Франція
- Гори
- Греція
- Іспанія
- Нідерланди
- Ісландія
- Литва
- Латвія
- Mapy, Plany miast, Atlasy
- Мініпутівники
- Німеччина
- Норвегія
- Активні подорожі
- Польща
- Португалія
- Інше
- Росія
- Румунія
- Словаччина
- Словенія
- Швейцарія
- Швеція
- Світ
- Туреччина
- Україна
- Угорщина
- Велика Британія
- Італія
-
Психологія
- Філософія життя
- Kompetencje psychospołeczne
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Аудіокниги
-
Бізнес та економіка
- Біткойн
- Ділова жінка
- Коучинг
- Контроль
- Електронний бізнес
- Економіка
- Фінанси
- Фондова біржа та інвестиції
- Особисті компетенції
- Комунікація та переговори
- Малий бізнес
- Маркетинг
- Мотивація
- Нерухомість
- Переконання та НЛП
- Податки
- Порадники
- Презентації
- Лідерство
- Зв'язки з громадськістю
- Секрет
- Соціальні засоби комунікації
- Продаж
- Стартап
- Ваша кар'єра
- Управління
- Управління проектами
- Людські ресурси (HR)
-
Для дітей
-
Для молоді
-
Освіта
-
Енциклопедії, словники
-
Історія
-
Інформатика
-
Інше
-
Іноземні мови
-
Культура та мистецтво
-
Шкільні читанки
-
Література
- Антології
- Балада
- Біографії та автобіографії
- Для дорослих
- Драми
- Журнали, щоденники, листи
- Епос, епопея
- Нарис
- Наукова фантастика та фантастика
- Фельєтони
- Художня література
- Гумор, сатира
- Інше
- Класичний
- Кримінальний роман
- Нехудожня література
- Художня література
- Mity i legendy
- Лауреати Нобелівської премії
- Новели
- Побутовий роман
- Okultyzm i magia
- Оповідання
- Спогади
- Подорожі
- Поезія
- Політика
- Науково-популярна
- Роман
- Історичний роман
- Проза
- Пригодницька
- Журналістика
- Роман-репортаж
- Romans i literatura obyczajowa
- Сенсація
- Трилер, жах
- Інтерв'ю та спогади
-
Природничі науки
-
Соціальні науки
-
Науково-популярна та академічна
-
Порадники
-
Професійні та спеціальні порадники
-
Юридична
-
Путівники та подорожі
-
Психологія
- Філософія життя
- Міжособистісне спілкування
- Mindfulness
- Загальне
- Переконання та НЛП
- Академічна психологія
- Психологія душі та розуму
- Психологія праці
- Relacje i związki
- Батьківство та дитяча психологія
- Вирішення проблем
- Інтелектуальний розвиток
- Секрет
- Сексуальність
- Спокушання
- Зовнішній вигляд та імідж
- Філософія життя
-
Релігія
-
Спорт, фітнес, дієти
-
Техніка і механіка
Відеокурси
-
Бази даних
-
Big Data
-
Biznes, ekonomia i marketing
-
Кібербезпека
-
Data Science
-
DevOps
-
Для дітей
-
Електроніка
-
Графіка / Відео / CAX
-
Ігри
-
Microsoft Office
-
Інструменти розробки
-
Програмування
-
Особистісний розвиток
-
Комп'ютерні мережі
-
Операційні системи
-
Тестування програмного забезпечення
-
Мобільні пристрої
-
UX/UI
-
Веброзробка, Web development
-
Управління
Подкасти
- Електронні книги
- Big data (Великі дані)
- Машинне навчання
- Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Деталі електронної книги
Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania ― nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu.
Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow. Z kolejnych rozdziałów dowiesz się, jak od strony technicznej wygląda korzystanie z platformy uczenia maszynowego. W książce znajdziesz również opis wzorców wdrażania, wnioskowania i monitorowania modeli w środowisku produkcyjnym.
Najciekawsze zagadnienia:
- cykl życia uczenia maszynowego i MLflow
- inżynieria cech i przetwarzanie wstępne za pomocą Sparka
- szkolenie modelu i budowa potoku
- budowa systemu danych z wykorzystaniem uczenia głębokiego
- praca TensorFlow w trybie rozproszonym
- skalowanie systemu i tworzenie jego wewnętrznej architektury
Właśnie takiej książki społeczność Sparka wyczekuje od dekady!
Andy Petrella, autor książki Fundamentals of Data Observability
Przedmowa
1. Rozproszone uczenie maszynowe. Terminologia i pojęcia
- Etapy przepływu pracy uczenia maszynowego
- Narzędzia i technologie w potoku uczenia maszynowego
- Modele przetwarzania rozproszonego
- Modele uniwersalne
- Dedykowane modele przetwarzania rozproszonego
- Wprowadzenie do architektury systemów rozproszonych
- Systemy scentralizowane a zdecentralizowane
- Modele interakcji
- Komunikacja w środowisku rozproszonym
- Wprowadzenie do metod uczenia zespołowego
- Wysoka i niska stronniczość
- Rodzaje metod zespołowych
- Topologie szkolenia rozproszonego learner
- Wyzwania związane z rozproszonymi systemami uczenia maszynowego
- Wydajność
- Zarządzanie zasobami
- Odporność na błędy
- Prywatność
- Przenośność
- Konfiguracja środowiska lokalnego
- Środowisko samouczków z rozdziałów 2. - 6.
- Środowisko samouczków z rozdziałów 7. - 10.
- Podsumowanie
2. Wprowadzenie do Sparka i PySparka
- Architektura Apache Spark
- Wprowadzenie do PySparka
- Podstawy Apache Spark
- Architektura oprogramowania
- PySpark a programowanie funkcyjne
- Uruchamianie kodu PySparka
- Ramki DataFrame biblioteki pandas kontra ramki DataFrame systemu Spark
- Scikit-Learn kontra MLlib
- Podsumowanie
3. Zarządzanie cyklem życia eksperymentu uczenia maszynowego za pomocą MLflow
- Wymagania dotyczące zarządzania cyklem życia uczenia maszynowego
- Czym jest MLflow?
- Komponenty oprogramowania platformy MLflow
- Użytkownicy platformy MLflow
- Komponenty platformy MLflow
- MLflow Tracking
- MLflow Projects
- MLflow Models
- MLflow Model Registry
- Korzystanie z platformy MLflow w rozwiązaniach dużej skali
- Podsumowanie
4. Pozyskiwanie danych, wstępne przetwarzanie i statystyki opisowe
- Pozyskiwanie danych za pomocą Sparka
- Przetwarzanie obrazów
- Przetwarzanie danych tabelarycznych
- Wstępne przetwarzanie danych
- Przetwarzanie wstępne a właściwe
- Po co wstępnie przetwarzać dane?
- Struktury danych
- Typy danych MLlib
- Przetwarzanie wstępne z wykorzystaniem transformatorów MLlib
- Wstępne przetwarzanie danych obrazów
- Zapisywanie danych i unikanie problemu małych plików
- Statystyki opisowe: poznawanie danych
- Obliczanie statystyk
- Statystyki opisowe z wykorzystaniem obiektu Summarizer Sparka
- Skośność danych
- Korelacja
- Podsumowanie
5. Inżynieria cech
- Cechy i ich wpływ na modele uczenia maszynowego
- Narzędzia do cechowania w bibliotece MLlib
- Ekstraktory
- Selektory
- Przykład: Word2Vec
- Proces cechowania obrazów
- Wykonywanie działań na obrazach
- Wyodrębnianie cech za pomocą API Sparka
- Proces cechowania tekstu
- Worek słów
- TF-IDF
- n-gramy
- Techniki dodatkowe
- Wzbogacanie zbioru danych
- Podsumowanie
6. Szkolenie modeli za pomocą biblioteki MLlib platformy Spark
- Algorytmy
- Nadzorowane uczenie maszynowe
- Klasyfikacja
- Regresja
- Nienadzorowane uczenie maszynowe
- Wydobywanie częstych wzorców
- Klasteryzacja
- Ocena
- Ewaluatory nadzorowane
- Ewaluatory nienadzorowane
- Hiperparametry i eksperymenty dostrajania
- Budowanie siatki parametrów
- Podział danych na zbiory szkoleniowe i testowe
- Walidacja krzyżowa: lepszy sposób testowania modeli
- Potoki uczenia maszynowego
- Budowa potoku
- Jak działa podział dla API Pipeline?
- Utrwalanie
- Podsumowanie
7. Łączenie Sparka z frameworkami uczenia głębokiego
- Podejście oparte na danych i dwóch klastrach
- Implementacja dedykowanej warstwy dostępu do danych
- Cechy DAL
- Wybór warstwy DAL
- Czym jest Petastorm?
- SparkDatasetConverter
- Petastorm jako magazyn Parquet
- Projekt Hydrogen
- Barierowy tryb wykonania
- Harmonogramowanie z uwzględnieniem akceleratorów
- Wprowadzenie do API Horovod Estimator
- Podsumowanie
8. Rozproszone uczenie maszynowe z wykorzystaniem TensorFlow
- Przegląd podstawowych wywołań API biblioteki TensorFlow
- Czym jest sieć neuronowa?
- Role i obowiązki w procesie klastra TensorFlow
- Ładowanie danych Parquet do zbioru danych TensorFlow
- Strategie rozproszonego uczenia maszynowego TensorFlow
- ParameterServerStrategy
- CentralStorageStrategy: jedna maszyna, wiele procesorów
- MirroredStrategy: jedna maszyna, wiele procesorów, lokalna kopia
- MultiWorkerMirroredStrategy: wiele maszyn, tryb synchroniczny
- TPUStrategy
- Co się zmienia po zmianie strategii?
- Szkoleniowe interfejsy API
- API Keras
- Niestandardowa pętla szkoleniowa
- API Estimator
- Połączmy kropki
- Rozwiązywanie problemów
- Podsumowanie
9. Rozproszone uczenie maszynowe z wykorzystaniem frameworka PyTorch
- Przegląd podstaw frameworka PyTorch
- Graf obliczeniowy
- Mechanika frameworka PyTorch i związane z nim pojęcia
- Strategie rozproszonego szkolenia modeli frameworka PyTorch
- Wprowadzenie do podejścia rozproszonego wykorzystywanego przez framework PyTorch
- Rozproszone i równoległe szkolenie danych (DDP)
- Szkolenie rozproszone oparte na RPC
- Topologie komunikacji frameworka PyTorch (c10d)
- Do czego można wykorzystać niskopoziomowe wywołania API frameworka PyTorch?
- Ładowanie danych za pomocą frameworka PyTorch i biblioteki Petastorm
- Rozwiązywanie problemów podczas korzystania z biblioteki Petastorm i frameworka PyTorch w środowisku rozproszonym
- Enigma niedopasowanych typów danych
- Tajemnica marudnych węzłów roboczych
- Czym PyTorch różni się od TensorFlow?
- Podsumowanie
10. Wzorce wdrażania modeli uczenia maszynowego
- Wzorce wdrażania
- Wzorzec 1. Prognozy zbiorcze
- Wzorzec 2. Model w ramach usługi
- Wzorzec 3. Model jako usługa
- Decydowanie o wykorzystywanym wzorcu
- Wymagania dotyczące oprogramowania produkcyjnego
- Monitorowanie modeli uczenia maszynowego w produkcji
- Dryf danych
- Dryf modelu, dryf koncepcji
- Przesunięcie dziedziny rozkładu (długi ogon)
- Jakie wskaźniki należy monitorować w produkcji?
- W jaki sposób wykorzystać system monitorowania do mierzenia zmian?
- Jak to wygląda w systemie produkcyjnym?
- Produkcyjna pętla sprzężenia zwrotnego
- Wdrażanie z wykorzystaniem biblioteki MLlib
- Produkcyjne potoki uczenia maszynowego ze strukturalnym przesyłaniem strumieniowym
- Wdrażanie z wykorzystaniem biblioteki MLflow
- Definiowanie wrappera MLflow
- Wdrażanie modelu jako mikrousługi
- Ładowanie modelu jako funkcji UDF platformy Spark
- Jak pracować nad systemem w sposób iteracyjny?
- Podsumowanie
Skorowidz
- Назва: Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
- Автор: Adi Polak
- Оригінальна назва: Scaling Machine Learning with Spark: Distributed ML with MLlib, TensorFlow, and PyTorch
- Переклад: Radosław Meryk
- ISBN: 978-83-289-1235-9, 9788328912359
- Дата видання: 2024-08-06
- Формат: Eлектронна книга
- Ідентифікатор видання: sparkr
- Видавець: Helion