Kategorie
Ebooki
-
Biznes i ekonomia
- Bitcoin
- Bizneswoman
- Coaching
- Controlling
- E-biznes
- Ekonomia
- Finanse
- Giełda i inwestycje
- Kompetencje osobiste
- Komputer w biurze
- Komunikacja i negocjacje
- Mała firma
- Marketing
- Motywacja
- Multimedialne szkolenia
- Nieruchomości
- Perswazja i NLP
- Podatki
- Polityka społeczna
- Poradniki
- Prezentacje
- Przywództwo
- Public Relation
- Raporty, analizy
- Sekret
- Social Media
- Sprzedaż
- Start-up
- Twoja kariera
- Zarządzanie
- Zarządzanie projektami
- Zasoby ludzkie (HR)
-
Dla dzieci
-
Dla młodzieży
-
Edukacja
-
Encyklopedie, słowniki
-
E-prasa
- Architektura i wnętrza
- Biznes i Ekonomia
- Dom i ogród
- E-Biznes
- Finanse
- Finanse osobiste
- Firma
- Fotografia
- Informatyka
- Kadry i płace
- Komputery, Excel
- Księgowość
- Kultura i literatura
- Naukowe i akademickie
- Ochrona środowiska
- Opiniotwórcze
- Oświata
- Podatki
- Podróże
- Psychologia
- Religia
- Rolnictwo
- Rynek książki i prasy
- Transport i Spedycja
- Zdrowie i uroda
-
Historia
-
Informatyka
- Aplikacje biurowe
- Bazy danych
- Bioinformatyka
- Biznes IT
- CAD/CAM
- Digital Lifestyle
- DTP
- Elektronika
- Fotografia cyfrowa
- Grafika komputerowa
- Gry
- Hacking
- Hardware
- IT w ekonomii
- Pakiety naukowe
- Podręczniki szkolne
- Podstawy komputera
- Programowanie
- Programowanie mobilne
- Serwery internetowe
- Sieci komputerowe
- Start-up
- Systemy operacyjne
- Sztuczna inteligencja
- Technologia dla dzieci
- Webmasterstwo
-
Inne
-
Języki obce
-
Kultura i sztuka
-
Lektury szkolne
-
Literatura
- Antologie
- Ballada
- Biografie i autobiografie
- Dla dorosłych
- Dramat
- Dzienniki, pamiętniki, listy
- Epos, epopeja
- Esej
- Fantastyka i science-fiction
- Felietony
- Fikcja
- Humor, satyra
- Inne
- Klasyczna
- Kryminał
- Literatura faktu
- Literatura piękna
- Mity i legendy
- Nobliści
- Nowele
- Obyczajowa
- Okultyzm i magia
- Opowiadania
- Pamiętniki
- Podróże
- Poemat
- Poezja
- Polityka
- Popularnonaukowa
- Powieść
- Powieść historyczna
- Proza
- Przygodowa
- Publicystyka
- Reportaż
- Romans i literatura obyczajowa
- Sensacja
- Thriller, Horror
- Wywiady i wspomnienia
-
Nauki przyrodnicze
-
Nauki społeczne
-
Podręczniki szkolne
-
Popularnonaukowe i akademickie
- Archeologia
- Bibliotekoznawstwo
- Filmoznawstwo
- Filologia
- Filologia polska
- Filozofia
- Finanse i bankowość
- Geografia
- Gospodarka
- Handel. Gospodarka światowa
- Historia i archeologia
- Historia sztuki i architektury
- Kulturoznawstwo
- Lingwistyka
- Literaturoznawstwo
- Logistyka
- Matematyka
- Medycyna
- Nauki humanistyczne
- Pedagogika
- Pomoce naukowe
- Popularnonaukowa
- Pozostałe
- Psychologia
- Socjologia
- Teatrologia
- Teologia
- Teorie i nauki ekonomiczne
- Transport i spedycja
- Wychowanie fizyczne
- Zarządzanie i marketing
-
Poradniki
-
Poradniki do gier
-
Poradniki zawodowe i specjalistyczne
-
Prawo
- BHP
- Historia
- Kodeks drogowy. Prawo jazdy
- Nauki prawne
- Ochrona zdrowia
- Ogólne, kompendium wiedzy
- Podręczniki akademickie
- Pozostałe
- Prawo budowlane i lokalowe
- Prawo cywilne
- Prawo finansowe
- Prawo gospodarcze
- Prawo gospodarcze i handlowe
- Prawo karne
- Prawo karne. Przestępstwa karne. Kryminologia
- Prawo międzynarodowe
- Prawo międzynarodowe i zagraniczne
- Prawo ochrony zdrowia
- Prawo oświatowe
- Prawo podatkowe
- Prawo pracy i ubezpieczeń społecznych
- Prawo publiczne, konstytucyjne i administracyjne
- Prawo rodzinne i opiekuńcze
- Prawo rolne
- Prawo socjalne, prawo pracy
- Prawo Unii Europejskiej
- Przemysł
- Rolne i ochrona środowiska
- Słowniki i encyklopedie
- Zamówienia publiczne
- Zarządzanie
-
Przewodniki i podróże
- Afryka
- Albumy
- Ameryka Południowa
- Ameryka Środkowa i Północna
- Australia, Nowa Zelandia, Oceania
- Austria
- Azja
- Bałkany
- Bliski Wschód
- Bułgaria
- Chiny
- Chorwacja
- Czechy
- Dania
- Egipt
- Estonia
- Europa
- Francja
- Góry
- Grecja
- Hiszpania
- Holandia
- Islandia
- Litwa
- Łotwa
- Mapy, Plany miast, Atlasy
- Miniprzewodniki
- Niemcy
- Norwegia
- Podróże aktywne
- Polska
- Portugalia
- Pozostałe
- Rosja
- Rumunia
- Słowacja
- Słowenia
- Szwajcaria
- Szwecja
- Świat
- Turcja
- Ukraina
- Węgry
- Wielka Brytania
- Włochy
-
Psychologia
- Filozofie życiowe
- Kompetencje psychospołeczne
- Komunikacja międzyludzka
- Mindfulness
- Ogólne
- Perswazja i NLP
- Psychologia akademicka
- Psychologia duszy i umysłu
- Psychologia pracy
- Relacje i związki
- Rodzicielstwo i psychologia dziecka
- Rozwiązywanie problemów
- Rozwój intelektualny
- Sekret
- Seksualność
- Uwodzenie
- Wygląd i wizerunek
- Życiowe filozofie
-
Religia
-
Sport, fitness, diety
-
Technika i mechanika
Audiobooki
-
Biznes i ekonomia
- Bitcoin
- Bizneswoman
- Coaching
- Controlling
- E-biznes
- Ekonomia
- Finanse
- Giełda i inwestycje
- Kompetencje osobiste
- Komunikacja i negocjacje
- Mała firma
- Marketing
- Motywacja
- Nieruchomości
- Perswazja i NLP
- Podatki
- Poradniki
- Prezentacje
- Przywództwo
- Public Relation
- Sekret
- Social Media
- Sprzedaż
- Start-up
- Twoja kariera
- Zarządzanie
- Zarządzanie projektami
- Zasoby ludzkie (HR)
-
Dla dzieci
-
Dla młodzieży
-
Edukacja
-
Encyklopedie, słowniki
-
Historia
-
Informatyka
-
Inne
-
Języki obce
-
Kultura i sztuka
-
Lektury szkolne
-
Literatura
- Antologie
- Ballada
- Biografie i autobiografie
- Dla dorosłych
- Dramat
- Dzienniki, pamiętniki, listy
- Epos, epopeja
- Esej
- Fantastyka i science-fiction
- Felietony
- Fikcja
- Humor, satyra
- Inne
- Klasyczna
- Kryminał
- Literatura faktu
- Literatura piękna
- Mity i legendy
- Nobliści
- Nowele
- Obyczajowa
- Okultyzm i magia
- Opowiadania
- Pamiętniki
- Podróże
- Poezja
- Polityka
- Popularnonaukowa
- Powieść
- Powieść historyczna
- Proza
- Przygodowa
- Publicystyka
- Reportaż
- Romans i literatura obyczajowa
- Sensacja
- Thriller, Horror
- Wywiady i wspomnienia
-
Nauki przyrodnicze
-
Nauki społeczne
-
Popularnonaukowe i akademickie
-
Poradniki
-
Poradniki zawodowe i specjalistyczne
-
Prawo
-
Przewodniki i podróże
-
Psychologia
- Filozofie życiowe
- Komunikacja międzyludzka
- Mindfulness
- Ogólne
- Perswazja i NLP
- Psychologia akademicka
- Psychologia duszy i umysłu
- Psychologia pracy
- Relacje i związki
- Rodzicielstwo i psychologia dziecka
- Rozwiązywanie problemów
- Rozwój intelektualny
- Sekret
- Seksualność
- Uwodzenie
- Wygląd i wizerunek
- Życiowe filozofie
-
Religia
-
Sport, fitness, diety
-
Technika i mechanika
Kursy video
-
Bazy danych
-
Big Data
-
Biznes, ekonomia i marketing
-
Cyberbezpieczeństwo
-
Data Science
-
DevOps
-
Dla dzieci
-
Elektronika
-
Grafika/Wideo/CAX
-
Gry
-
Microsoft Office
-
Narzędzia programistyczne
-
Programowanie
-
Rozwój osobisty
-
Sieci komputerowe
-
Systemy operacyjne
-
Testowanie oprogramowania
-
Urządzenia mobilne
-
UX/UI
-
Web development
-
Zarządzanie
Podcasty
- Ebooki
- Big data
- Uczenie maszynowe
- Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Szczegóły ebooka
Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania ― nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu.
Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow. Z kolejnych rozdziałów dowiesz się, jak od strony technicznej wygląda korzystanie z platformy uczenia maszynowego. W książce znajdziesz również opis wzorców wdrażania, wnioskowania i monitorowania modeli w środowisku produkcyjnym.
Najciekawsze zagadnienia:
- cykl życia uczenia maszynowego i MLflow
- inżynieria cech i przetwarzanie wstępne za pomocą Sparka
- szkolenie modelu i budowa potoku
- budowa systemu danych z wykorzystaniem uczenia głębokiego
- praca TensorFlow w trybie rozproszonym
- skalowanie systemu i tworzenie jego wewnętrznej architektury
Właśnie takiej książki społeczność Sparka wyczekuje od dekady!
Andy Petrella, autor książki Fundamentals of Data Observability
Przedmowa
1. Rozproszone uczenie maszynowe. Terminologia i pojęcia
- Etapy przepływu pracy uczenia maszynowego
- Narzędzia i technologie w potoku uczenia maszynowego
- Modele przetwarzania rozproszonego
- Modele uniwersalne
- Dedykowane modele przetwarzania rozproszonego
- Wprowadzenie do architektury systemów rozproszonych
- Systemy scentralizowane a zdecentralizowane
- Modele interakcji
- Komunikacja w środowisku rozproszonym
- Wprowadzenie do metod uczenia zespołowego
- Wysoka i niska stronniczość
- Rodzaje metod zespołowych
- Topologie szkolenia rozproszonego learner
- Wyzwania związane z rozproszonymi systemami uczenia maszynowego
- Wydajność
- Zarządzanie zasobami
- Odporność na błędy
- Prywatność
- Przenośność
- Konfiguracja środowiska lokalnego
- Środowisko samouczków z rozdziałów 2. - 6.
- Środowisko samouczków z rozdziałów 7. - 10.
- Podsumowanie
2. Wprowadzenie do Sparka i PySparka
- Architektura Apache Spark
- Wprowadzenie do PySparka
- Podstawy Apache Spark
- Architektura oprogramowania
- PySpark a programowanie funkcyjne
- Uruchamianie kodu PySparka
- Ramki DataFrame biblioteki pandas kontra ramki DataFrame systemu Spark
- Scikit-Learn kontra MLlib
- Podsumowanie
3. Zarządzanie cyklem życia eksperymentu uczenia maszynowego za pomocą MLflow
- Wymagania dotyczące zarządzania cyklem życia uczenia maszynowego
- Czym jest MLflow?
- Komponenty oprogramowania platformy MLflow
- Użytkownicy platformy MLflow
- Komponenty platformy MLflow
- MLflow Tracking
- MLflow Projects
- MLflow Models
- MLflow Model Registry
- Korzystanie z platformy MLflow w rozwiązaniach dużej skali
- Podsumowanie
4. Pozyskiwanie danych, wstępne przetwarzanie i statystyki opisowe
- Pozyskiwanie danych za pomocą Sparka
- Przetwarzanie obrazów
- Przetwarzanie danych tabelarycznych
- Wstępne przetwarzanie danych
- Przetwarzanie wstępne a właściwe
- Po co wstępnie przetwarzać dane?
- Struktury danych
- Typy danych MLlib
- Przetwarzanie wstępne z wykorzystaniem transformatorów MLlib
- Wstępne przetwarzanie danych obrazów
- Zapisywanie danych i unikanie problemu małych plików
- Statystyki opisowe: poznawanie danych
- Obliczanie statystyk
- Statystyki opisowe z wykorzystaniem obiektu Summarizer Sparka
- Skośność danych
- Korelacja
- Podsumowanie
5. Inżynieria cech
- Cechy i ich wpływ na modele uczenia maszynowego
- Narzędzia do cechowania w bibliotece MLlib
- Ekstraktory
- Selektory
- Przykład: Word2Vec
- Proces cechowania obrazów
- Wykonywanie działań na obrazach
- Wyodrębnianie cech za pomocą API Sparka
- Proces cechowania tekstu
- Worek słów
- TF-IDF
- n-gramy
- Techniki dodatkowe
- Wzbogacanie zbioru danych
- Podsumowanie
6. Szkolenie modeli za pomocą biblioteki MLlib platformy Spark
- Algorytmy
- Nadzorowane uczenie maszynowe
- Klasyfikacja
- Regresja
- Nienadzorowane uczenie maszynowe
- Wydobywanie częstych wzorców
- Klasteryzacja
- Ocena
- Ewaluatory nadzorowane
- Ewaluatory nienadzorowane
- Hiperparametry i eksperymenty dostrajania
- Budowanie siatki parametrów
- Podział danych na zbiory szkoleniowe i testowe
- Walidacja krzyżowa: lepszy sposób testowania modeli
- Potoki uczenia maszynowego
- Budowa potoku
- Jak działa podział dla API Pipeline?
- Utrwalanie
- Podsumowanie
7. Łączenie Sparka z frameworkami uczenia głębokiego
- Podejście oparte na danych i dwóch klastrach
- Implementacja dedykowanej warstwy dostępu do danych
- Cechy DAL
- Wybór warstwy DAL
- Czym jest Petastorm?
- SparkDatasetConverter
- Petastorm jako magazyn Parquet
- Projekt Hydrogen
- Barierowy tryb wykonania
- Harmonogramowanie z uwzględnieniem akceleratorów
- Wprowadzenie do API Horovod Estimator
- Podsumowanie
8. Rozproszone uczenie maszynowe z wykorzystaniem TensorFlow
- Przegląd podstawowych wywołań API biblioteki TensorFlow
- Czym jest sieć neuronowa?
- Role i obowiązki w procesie klastra TensorFlow
- Ładowanie danych Parquet do zbioru danych TensorFlow
- Strategie rozproszonego uczenia maszynowego TensorFlow
- ParameterServerStrategy
- CentralStorageStrategy: jedna maszyna, wiele procesorów
- MirroredStrategy: jedna maszyna, wiele procesorów, lokalna kopia
- MultiWorkerMirroredStrategy: wiele maszyn, tryb synchroniczny
- TPUStrategy
- Co się zmienia po zmianie strategii?
- Szkoleniowe interfejsy API
- API Keras
- Niestandardowa pętla szkoleniowa
- API Estimator
- Połączmy kropki
- Rozwiązywanie problemów
- Podsumowanie
9. Rozproszone uczenie maszynowe z wykorzystaniem frameworka PyTorch
- Przegląd podstaw frameworka PyTorch
- Graf obliczeniowy
- Mechanika frameworka PyTorch i związane z nim pojęcia
- Strategie rozproszonego szkolenia modeli frameworka PyTorch
- Wprowadzenie do podejścia rozproszonego wykorzystywanego przez framework PyTorch
- Rozproszone i równoległe szkolenie danych (DDP)
- Szkolenie rozproszone oparte na RPC
- Topologie komunikacji frameworka PyTorch (c10d)
- Do czego można wykorzystać niskopoziomowe wywołania API frameworka PyTorch?
- Ładowanie danych za pomocą frameworka PyTorch i biblioteki Petastorm
- Rozwiązywanie problemów podczas korzystania z biblioteki Petastorm i frameworka PyTorch w środowisku rozproszonym
- Enigma niedopasowanych typów danych
- Tajemnica marudnych węzłów roboczych
- Czym PyTorch różni się od TensorFlow?
- Podsumowanie
10. Wzorce wdrażania modeli uczenia maszynowego
- Wzorce wdrażania
- Wzorzec 1. Prognozy zbiorcze
- Wzorzec 2. Model w ramach usługi
- Wzorzec 3. Model jako usługa
- Decydowanie o wykorzystywanym wzorcu
- Wymagania dotyczące oprogramowania produkcyjnego
- Monitorowanie modeli uczenia maszynowego w produkcji
- Dryf danych
- Dryf modelu, dryf koncepcji
- Przesunięcie dziedziny rozkładu (długi ogon)
- Jakie wskaźniki należy monitorować w produkcji?
- W jaki sposób wykorzystać system monitorowania do mierzenia zmian?
- Jak to wygląda w systemie produkcyjnym?
- Produkcyjna pętla sprzężenia zwrotnego
- Wdrażanie z wykorzystaniem biblioteki MLlib
- Produkcyjne potoki uczenia maszynowego ze strukturalnym przesyłaniem strumieniowym
- Wdrażanie z wykorzystaniem biblioteki MLflow
- Definiowanie wrappera MLflow
- Wdrażanie modelu jako mikrousługi
- Ładowanie modelu jako funkcji UDF platformy Spark
- Jak pracować nad systemem w sposób iteracyjny?
- Podsumowanie
Skorowidz
- Tytuł: Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
- Autor: Adi Polak
- Tytuł oryginału: Scaling Machine Learning with Spark: Distributed ML with MLlib, TensorFlow, and PyTorch
- Tłumaczenie: Radosław Meryk
- ISBN: 978-83-289-1235-9, 9788328912359
- Data wydania: 2024-08-06
- Format: Ebook
- Identyfikator pozycji: sparkr
- Wydawca: Helion